X Ray Photoelectron Spectroscopy was used to measure valence band offsets for Al 2 O 3 deposited by Atomic Layer Deposition on α -(Al x Ga 1-x ) 2 O 3 alloys over a wide range of Al contents, x, from 0.26–0.74, corresponding to a bandgap range from 5.8–7 eV. These alloys were grown by Pulsed Laser Deposition. The band alignments were type I (nested) at x <0.5, with valence band offsets 0.13 eV for x = 0.26 and x = 0.46. At higher Al contents, the band alignment was a staggered alignment, with valence band offsets of − 0.07 eV for x = 0.58 and −0.17 for x = 0.74, ie. negative valence band offsets in both cases. The conduction band offsets are also small at these high Al contents, being only 0.07 eV at x = 0.74. The wide bandgap of the α -(Al x Ga 1-x ) 2 O 3 alloys makes it difficult to find dielectrics with nested band alignments over the entire composition range.
more »
« less
Analyzing the Li–Al–O Interphase of Atomic Layer-Deposited Al 2 O 3 Films on Layered Oxide Cathodes Using Atomistic Simulations
- Award ID(s):
- 1931587
- PAR ID:
- 10552704
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- ACS Applied Materials & Interfaces
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1944-8244
- Page Range / eLocation ID:
- 1861 to 1875
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A multistep phase sequence following the crystallization of amorphous Al2O3 via solid-phase epitaxy (SPE) points to methods to create low-defect-density thin films of the metastable cubic γ-Al2O3 polymorph. An amorphous Al2O3 thin film on a (0001) α-Al2O3 sapphire substrate initially transforms upon heating to form epitaxial γ-Al2O3, followed by a transformation to monoclinic θ-Al2O3, and eventually to α-Al2O3. Epitaxial γ-Al2O3 layers with low mosaic widths in X-ray rocking curves can be formed via SPE by crystallizing the γ-Al2O3 phase from amorphous Al2O3 and avoiding the microstructural inhomogeneity arising from the spatially inhomogeneous transformation to θ-Al2O3. A complementary molecular dynamics (MD) simulation indicates that the amorphous layer and γ-Al2O3 have similar Al coordination geometry, suggesting that γ-Al2O3 forms in part because it involves the minimum rearrangement of the initially amorphous configuration. The lattice parameters of γ-Al2O3 are consistent with a structure in which the majority of the Al vacancies in the spinel structure occupy sites with tetrahedral coordination, consistent with the MD results. The formation of Al vacancies at tetrahedral spinel sites in epitaxial γ-Al2O3 can minimize the epitaxial elastic deformation of γ-Al2O3 during crystallization.more » « less
An official website of the United States government

