skip to main content


Search for: All records

Award ID contains: 1931587

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Reconfiguration of chiral ceramic nanostructures after ion intercalation should favor specific nanoscale twists leading to strong chiroptical effects.  In this work, V2O3nanoparticles are shown to have “built‐in” chiral distortions caused by binding of tartaric acid enantiomers to the nanoparticle surface. As evidenced by spectroscopy/microscopy techniques and calculations of nanoscale chirality measures, the intercalation of Zn2+ions into the V2O3lattice results in particle expansion, untwist deformations, and chirality reduction. Coherent deformations in the particle ensemble manifest as changes in sign and positions of circular polarization bands at ultraviolet, visible, mid‐infrared (IR), near‐IR (NIR), and IR wavelengths. Theg‐factors observed for IR and NIR spectral diapasons are ≈100–400 times higher than those for previously reported dielectric, semiconductor, and plasmonic nanoparticles. Nanocomposite films layer‐by‐layer assembled (LBL) from V2O3nanoparticles reveal cyclic‐voltage‐driven modulation of optical activity. Device prototypes for IR and NIR range problematic for liquid crystals and other organic materials are demonstrated. High optical activity, synthetic simplicity, sustainable processability, and environmental robustness of the chiral LBL nanocomposites provide a versatile platform for photonic devices. Similar reconfigurations of particle shapes are expected for multiple chiral ceramic nanostructures, leading to unique optical, electrical, and magnetic properties.

     
    more » « less
  2. Abstract

    The earlier integration of validated Lennard–Jones (LJ) potentials for 8 fcc metals into materials and biomolecular force fields has advanced multiple research fields, for example, metal–electrolyte interfaces, recognition of biomolecules, colloidal assembly of metal nanostructures, alloys, and catalysis. Here we introduce 12-6 and 9-6 LJ parameters for classical all-atom simulations of 10 further fcc metals (Ac, Ca (α), Ce (γ), Es (β), Fe (γ), Ir, Rh, Sr (α), Th (α), Yb (β)) and stainless steel. The parameters reproduce lattice constants, surface energies, water interfacial energies, and interactions with (bio)organic molecules in 0.1 to 5% agreement with experiment, as well as qualitative mechanical properties under standard conditions. Deviations are reduced up to a factor of one hundred in comparison to earlier Lennard–Jones parameters, embedded atom models, and density functional theory. We also explain a quantitative correlation between atomization energies from experiments and surface energies that supports parameter development. The models are computationally very efficient and applicable to an exponential space of alloys. Compatibility with a wide range of force fields such as the Interface force field (IFF), AMBER, CHARMM, COMPASS, CVFF, DREIDING, OPLS-AA, and PCFF enables reliable simulations of nanostructures up to millions of atoms and microsecond time scales. User-friendly model building and input generation are available in the CHARMM-GUI Nanomaterial Modeler. As a limitation, deviations in mechanical properties vary and are comparable to DFT methods. We discuss the incorporation of reactivity and features of the electronic structure to expand the range of applications and further increase the accuracy.

     
    more » « less
  3. Free, publicly-accessible full text available November 14, 2024
  4. Free, publicly-accessible full text available June 13, 2024
  5. Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of β-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca–Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general. 
    more » « less