Abstract Climate-driven permafrost thaw can release ancient carbon to the atmosphere, begetting further warming in a positive feedback loop. Polar ice core data and young radiocarbon ages of dissolved methane in thermokarst lakes have challenged the importance of this feedback, but field studies did not adequately account for older methane released from permafrost through bubbling. We synthesized panarctic isotope and emissions datasets to derive integrated ages of panarctic lake methane fluxes. Methane age in modern thermokarst lakes (3132 ± 731 years before present) reflects remobilization of ancient carbon. Thermokarst-lake methane emissions fit within the constraints imposed by polar ice core data. Younger, albeit ultimately larger sources of methane from glacial lakes, estimated here, lagged those from thermokarst lakes. Our results imply that panarctic lake methane release was a small positive feedback to climate warming, comprising up to 17% of total northern hemisphere sources during the deglacial period.
more »
« less
Amplifying feedback loop between drought, soil desiccation cracking, and greenhouse gas emissions
The continuous escalation of carbon dioxide (CO2) emissions into the atmosphere is recognized as the primary catalyst for anthropogenic climate change. In 2021, CO2 emerged as the predominant contributor to the warming effect of all human-made greenhouse gases (GHGs), accounting for two-thirds of their global heating impact. While the primary anthropogenic source of increased atmospheric CO2 concentration is the combustion of fossil fuels, the largest terrestrial source of CO2 emissions is soil where 80% of the total terrestrial carbon is stored. Approximately 62% of soil carbon is in organic form and readily released as CO2, while the remaining is made up of inorganic carbon (SIC). Here, we postulate that there is an amplifying feedback loop between drought, soil desiccation cracking, and CO2 emission in a warming climate – a critical aspect that has been overlooked in the existing literature. Further, we argue that the postulated feedback loop affects the emissions of other GHGs, such as methane (CH4) and nitrous oxide (N2O), from soils. The urgent need to recognize and characterize this exacerbating feedback loop is twofold. Firstly, it is widely acknowledged that drought accelerates the oxidation of soil organic carbon (SOC) and, thus, increases CO2 emissions into the atmosphere. Drought-induced soil moisture deficits differentially affect plant processes; while photosynthesis rates may be reduced in plants, leading to decreased carbon uptake, respiration rates can vary. Initially, drought may cause a slight increase in respiration, despite a decline in photosynthesis, leading to increased carbon emissions from the soil. These effects can differ based on ecosystem types, highlighting the complex interplay between drought, photosynthesis, and respiration. Secondly, drought triggers soil desiccation cracking, substantially increasing the permeability of the soil and the interfacial exchange area between the atmosphere and the soil, which, in turn, can considerably increase CO2 efflux in soil by exposing deeper and older stores of soil carbon. Desiccation cracking threatens earthen infrastructure systems and the natural environment. The problems associated with desiccation cracks are becoming more prevalent as anthropogenic climate change exacerbates the severity and frequency of droughts, heatwaves, and drought-heavy precipitation cycles (4). As the warming trends continue, more (and possibly older) CO2 is released from the soil, which can further contribute to global warming. Thus, a chain of events happens in a cascading manner. Failure to consider the hypothesized feedback loop can result in significant inaccuracies when modeling and predicting GHG emissions from soil. It may also lead to underestimating the overall impact of climate change on critical aspects such as soil health, crop production, and the structural integrity of earthen infrastructure.
more »
« less
- PAR ID:
- 10552831
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 031005
- Subject(s) / Keyword(s):
- drought climate change greenhouse gas emissions soil desiccation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Oceanic absorption of atmospheric carbon dioxide CO2 is expected to slow down under increasing anthropogenic emissions; however, the driving mechanisms and rates of change remain uncertain, limiting our ability to project long‐term changes in climate. Using an Earth system simulation, we show that the uptake of anthropogenic carbon will slow in the next three centuries via reductions in surface alkalinity. Warming and associated changes in precipitation and evaporation intensify density stratification of the upper ocean, inhibiting the transport of alkaline water from the deep. The effect of these changes is amplified threefold by reduced carbonate buffering, making alkalinity a dominant control on CO2 uptake on multi‐century timescales. Our simulation reveals a previously unknown alkalinity‐climate feedback loop, amplifying multi‐century warming under high emission trajectories.more » « less
-
Abstract Global climate changes, especially the rise of global mean temperature due to the increased carbon dioxide (CO2) concentration, can, in turn, result in higher anthropogenic and biogenic greenhouse gas emissions. This potentially leads to a positive loop of climate–carbon feedback in the Earth’s climate system, which calls for sustainable environmental strategies that can mitigate both heat and carbon emissions, such as urban greening. In this study, we investigate the impact of urban irrigation over green spaces on ambient temperatures and CO2exchange across major cities in the contiguous United States. Our modeling results indicate that the carbon release from urban ecosystem respiration is reduced by evaporative cooling in humid climate, but promoted in arid/semi-arid regions due to increased soil moisture. The irrigation-induced environmental co-benefit in heat and carbon mitigation is, in general, positively correlated with urban greening fraction and has the potential to help counteract climate–carbon feedback in the built environment.more » « less
-
Climate change is expected to alter the statistics of extreme events including rainfall storms, floods, droughts, and heatwaves. Climate-adaptive geotechnical structures warrant a quantitative assessment of the impacts of emerging and projected extreme patterns on the short and long-term behaviors of earthen structures. Furthermore, long-term changes to soil carbon and moisture due to non-extreme climate events should also be considered. While several large-scale studies have been conducted to evaluate various aspects of climate change, there is a clear gap in the state of knowledge in terms of assessing the resilience of geotechnical structures to changes in climatic trends (e.g., warmer climate, protracted droughts, intensified extreme precipitations, and sea level rise). The majority of the aforementioned climatic trends pose multi-physics problems involving thermo-hydro-mechanical (THM) processes in partially saturated soils and earthen structures. This review paper discusses how soil-atmospheric interactions and extreme event patterns in a changing climate can alter soil properties and loading conditions, affecting the performance of partially saturated geotechnical structures. We speculate how changes in climatic trends may weaken partially saturated earthen structures through strength reduction, drying, soil desiccation cracking, shrinkage, microbial oxidation of soil organic matter, fluctuation in the ground water table, land and surface erosion, and highly dynamic pore pressure changes. Each of these weakening processes is primarily induced by variations in the soil moisture and temperature. Finally, we discuss potential modes of failure imposed on partially saturated earthen structures by climatic trends.more » « less
-
The permafrost region has accumulated organic carbon in cold and waterlogged soils over thousands of years and now contains three times as much carbon as the atmosphere. Global warming is degrading permafrost with the potential to accelerate climate change as increased microbial decomposition releases soil carbon as greenhouse gases. A 19-year time series of soil and ecosystem respiration radiocarbon from Alaska provides long-term insight into changing permafrost soil carbon dynamics in a warmer world. Nine per cent of ecosystem respiration and 23% of soil respiration observations had radiocarbon values more than 50‰ lower than the atmospheric value. Furthermore, the overall trend of ecosystem and soil respiration radiocarbon values through time decreased more than atmospheric radiocarbon values did, indicating that old carbon degradation was enhanced. Boosted regression tree analyses showed that temperature and moisture environmental variables had the largest relative influence on lower radiocarbon values. This suggested that old carbon degradation was controlled by warming/permafrost thaw and soil drying together, as waterlogged soil conditions could protect soil carbon from microbial decomposition even when thawed. Overall, changing conditions increasingly favoured the release of old carbon, which is a definitive fingerprint of an accelerating feedback to climate change as a consequence of warming and permafrost destabilization. This article is part of the Theo Murphy meeting issue ‘Radiocarbon in the Anthropocene’.more » « less
An official website of the United States government

