skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Panarctic lakes exerted a small positive feedback on early Holocene warming due to deglacial release of methane
Abstract Climate-driven permafrost thaw can release ancient carbon to the atmosphere, begetting further warming in a positive feedback loop. Polar ice core data and young radiocarbon ages of dissolved methane in thermokarst lakes have challenged the importance of this feedback, but field studies did not adequately account for older methane released from permafrost through bubbling. We synthesized panarctic isotope and emissions datasets to derive integrated ages of panarctic lake methane fluxes. Methane age in modern thermokarst lakes (3132 ± 731 years before present) reflects remobilization of ancient carbon. Thermokarst-lake methane emissions fit within the constraints imposed by polar ice core data. Younger, albeit ultimately larger sources of methane from glacial lakes, estimated here, lagged those from thermokarst lakes. Our results imply that panarctic lake methane release was a small positive feedback to climate warming, comprising up to 17% of total northern hemisphere sources during the deglacial period.  more » « less
Award ID(s):
1903623 1903735
PAR ID:
10470256
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Communications Earth and Environment (Nature)
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Freshwater ecosystem contributions to the global methane budget remains the most uncertain among natural sources. With warming and accompanying carbon release from thawed permafrost and thermokarst lake expansion, the increase of methane emissions could be large. However, the impact and relative importance of various factors related to warming remain uncertain. Based on diverse lake characteristics incorporated in modeling and observational data, we calibrate and verify a lake biogeochemistry model. The model is then applied to estimate global lake methane emissions and examine the impacts of temperature increase for the first and the last decades of the 21st century under different climate scenarios. We find that current emissions are 24.0 ± 8.4 Tg CH4 yr−1from lakes larger than 0.1 km2, accounting for 11% of the global total natural source as estimated based on atmospheric inversion. Future projections under the RCP8.5 scenario suggest a 58%–86% growth in emissions from lakes. Our model sensitivity analysis indicates that additional carbon substrates from thawing permafrost may enhance methane production under warming in the Arctic. Warming enhanced methane oxidation in lake water can be an effective sink to reduce the net release from global lakes. 
    more » « less
  2. Abstract Thermokarst lakes cause abrupt and sustained permafrost degradation and have the potential to release large quantities of ancient carbon to the atmosphere. Despite concerns about how lakes will affect the permafrost carbon feedback, the magnitude of carbon dioxide and methane emissions from deep permafrost soils remains poorly understood. Here we incubated a very deep sediment core (20 m) to constrain the potential productivity of thawed Yedoma and underlying Quaternary sand and gravel deposits. Through radiocarbon dating, sediment incubations and sediment facies classifications, we show that extensive permafrost thaw can occur beneath lakes on timescales of decades to centuries. Although it has been assumed that shallow, aerobic carbon dioxide production will dominate the climate impact of permafrost thaw, we found that anaerobic carbon dioxide and methane production from deep sediments was commensurate with aerobic production on a per gram carbon basis, and had double the global warming potential at warmer temperatures. Carbon release from deep Arctic sediments may thus have a more substantial impact on a changing climate than currently anticipated. These environments are presently overlooked in estimates of the permafrost carbon feedback. 
    more » « less
  3. Abstract Thermokarst lakes accelerate deep permafrost thaw and the mobilization of previously frozen soil organic carbon. This leads to microbial decomposition and large releases of carbon dioxide (CO2) and methane (CH4) that enhance climate warming. However, the time scale of permafrost-carbon emissions following thaw is not well known but is important for understanding how abrupt permafrost thaw impacts climate feedback. We combined field measurements and radiocarbon dating of CH4ebullition with (a) an assessment of lake area changes delineated from high-resolution (1–2.5 m) optical imagery and (b) geophysical measurements of thaw bulbs (taliks) to determine the spatiotemporal dynamics of hotspot-seep CH4ebullition in interior Alaska thermokarst lakes. Hotspot seeps are characterized as point-sources of high ebullition that release14C-depleted CH4from deep (up to tens of meters) within lake thaw bulbs year-round. Thermokarst lakes, initiated by a variety of factors, doubled in number and increased 37.5% in area from 1949 to 2009 as climate warmed. Approximately 80% of contemporary CH4hotspot seeps were associated with this recent thermokarst activity, occurring where 60 years of abrupt thaw took place as a result of new and expanded lake areas. Hotspot occurrence diminished with distance from thermokarst lake margins. We attribute older14C ages of CH4released from hotspot seeps in older, expanding thermokarst lakes (14CCH420 079 ± 1227 years BP, mean ± standard error (s.e.m.) years) to deeper taliks (thaw bulbs) compared to younger14CCH4in new lakes (14CCH48526 ± 741 years BP) with shallower taliks. We find that smaller, non-hotspot ebullition seeps have younger14C ages (expanding lakes 7473 ± 1762 years; new lakes 4742 ± 803 years) and that their emissions span a larger historic range. These observations provide a first-order constraint on the magnitude and decadal-scale duration of CH4-hotspot seep emissions following formation of thermokarst lakes as climate warms. 
    more » « less
  4. Abstract Understanding methane (CH4) emission from thermokarst lakes is crucial for predicting the impacts of abrupt thaw on the permafrost carbon-climate feedback. However, observational evidence, especially from high-altitude permafrost regions, is still scarce. Here, by combining field surveys, radio- and stable-carbon isotopic analyses, and metagenomic sequencing, we present multiple characteristics of CH4emissions from 120 thermokarst lakes in 30 clusters along a 1100 km transect on the Tibetan Plateau. We find that thermokarst lakes have high CH4emissions during the ice-free period (13.4 ± 1.5 mmol m−2d−1; mean ± standard error) across this alpine permafrost region. Ebullition constitutes 84% of CH4emissions, which are fueled primarily by young carbon decomposition through the hydrogenotrophic pathway. The relative abundances of methanogenic genes correspond to the observed CH4fluxes. Overall, multiple parameters obtained in this study provide benchmarks for better predicting the strength of permafrost carbon-climate feedback in high-altitude permafrost regions. 
    more » « less
  5. The rapid climate warming is affecting the Arctic which is rich in aquatic systems. As a result of permafrost thaw, thermokarst lakes and ponds are either shrinking due to lake drainage or expanding due to lake shore erosion. This process in turn mobilizes organic carbon, which is released by permafrost deposits and active layer material that slips into the lake. In this study, we combine hydrochemical measurements and remote sensing data to analyze the influence of lake change processes, especially lake growth, on lake hydrochemical parameters such as DOC, EC, pH as well as stable oxygen and hydrogen isotopes in the Arctic Coastal Plain. For our entire dataset of 97 water samples from 82 water bodies, we found significantly higher CH4 concentrations in lakes with a floating-ice regime and significantly higher DOC concentrations in lakes with a bedfast-ice regime. We show significantly lower CH4 concentrations in lagoons compared to lakes as a result of an effective CH4 oxidation that increased with a seawater connection. For our detailed lake sampling of two thermokarst lakes, we found a significant positive correlation for lake shore erosion and DOC for one of the lakes. Our detailed lake sampling approach indicates that the generally shallow thermokarst lakes are overall well mixed and that single hydrochemical samples are representative for the entire lake. Finally, our study confirms that DOC concentrations correlates with lake size, ecoregion type and underlying deposits. 
    more » « less