Giant kelpMacrocystis pyriferaprovides the foundation for immense biodiversity on the coast of California, USA. Kelp forests can change seawater retention time, altering water chemistry, including pH and dissolved oxygen (DO), as well as the magnitude and predictability of variability in the same properties. Environmental heterogeneity across space and time could drive organismal performance and processes such as transgenerational plasticity (TGP), where parental experience modifies the offspring phenotype, potentially conferring tolerance to future environmental stress. We monitored environmental variability by deploying temperature, pH, and DO sensors inside and outside a temperate kelp forest in the Santa Barbara Channel (SBC) throughout the gametogenesis period of a key herbivore, the purple urchinStrongylocentrotus purpuratus. Over the 6 mo period, pH and temperature were slightly elevated inside the kelp forest, accompanied by more predictable, low-frequency variability relative to outside. AdultS. purpuratuswere conditioned inside and outside the kelp spanning gametogenesis. The urchins were spawned and their larvae were raised under high (1053 µatm) and lowpCO2(435 µatm) at 15°C in the laboratory to assess their physiological response to the maternal and developmental environments. Larvae raised under highpCO2were more susceptible to acute thermal stress; however, within each larval treatment, progeny from outside-conditioned mothers had a 0.4°C higher lethal temperature (LT50). Our results indicate that heterogeneity in abiotic factors associated with kelp can have transgenerational effects in the field, and interactions between factors, including temperature and pH, will impact purple urchins as local variability associated with marine heatwaves and upwelling evolves with climate change.
more »
« less
This content will become publicly available on November 1, 2025
Temperature influences immune cell development and body length in purple sea urchin larvae
Anthropogenic climate change has increased the frequency and intensity of marine heatwaves that may broadly impact the health of marine invertebrates. Rising ocean temperatures lead to increases in disease prevalence in marine organisms; it is therefore critical to understand how marine heatwaves impact immune system devel- opment. The purple sea urchin (Strongylocentrotus purpuratus) is an ecologically important, broadcast-spawning, omnivore that primarily inhabits kelp forests in the northeastern Pacific Ocean. The S. purpuratus life cycle in- cludes a relatively long-lived (~2 months) planktotrophic larval stage. Larvae have a well-characterized cellular immune system that is mediated, in part, by a subset of mesenchymal cells known as pigment cells. To assess the role of environmental temperature on the development of larval immune cells, embryos were generated from adult sea urchins conditioned at 14 C. Embryos were then cultured in either ambient (14 C) or elevated (18 C) seawater. Results indicate that larvae raised in an elevated temperature were slightly larger and had more pigment cells than those raised at ambient temperature. Further, the larval phenotypes varied significantly among genetic crosses, which highlights the importance of genotype in structuring how the immune system develops in the context of the environment. Overall, these results indicate that larvae are phenotypically plastic in modulating their immune cells and body length in response to adverse developmental conditions
more »
« less
- Award ID(s):
- 1831937
- PAR ID:
- 10552868
- Publisher / Repository:
- Elsevier Ltd.
- Date Published:
- Journal Name:
- Marine Environmental Research
- Volume:
- 202
- Issue:
- C
- ISSN:
- 0141-1136
- Page Range / eLocation ID:
- 106705
- Subject(s) / Keyword(s):
- Strongylocentrotus purpuratus, Marine heatwaves, Pigment cells, Body size, Immune function, Larvae
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Marine heatwave (MHW) events, characterized by periods of anomalous temperatures, are an increasingly prevalent threat to coastal marine ecosystems. Given the seasonal phenology of MHWs, the full extent of their biological consequences may depend on how these thermal stress events align with an organism’s reproductive cycle. In organisms with more complex life cycles (e.g., many marine invertebrate species) the alignment of adult and larval environments may be an important factor determining offspring success, setting the stage for MHW events to influence reproduction and development in situ . Here, the influence of MHW-like temperatures on the early development of the California purple sea urchin, Strongylocentrotus purpuratus , were explored within the context of paternal thermal history. Based on temperature data collected during MHW events seen in Southern California from 2014–2020, adult urchins were acclimated to either MHW or non-MHW temperatures for 28 days before their sperm was used to produce embryos that were subsequently raised under varying thermal conditions. Once offspring reached an early larval stage, the impact of paternal and offspring environments were assessed on two aspects of offspring performance: larval size and thermal tolerance. Exposure to elevated temperatures during early development resulted in larger, more thermally tolerant larvae, with further influences of paternal identity and thermal history, respectively. The alignment of paternal and offspring exposure to MHW temperatures had additional positive benefits on larval thermal tolerance, but this tolerance significantly decreased when their thermal experience mismatched. As the highest recorded temperatures within past MHW events have occurred during the gametogenesis of many kelp forest benthic marine invertebrate species, such as the purple sea urchin, such parental mediated impacts may represent important drivers of future recruitment and population composition for these species.more » « less
-
Sea urchins are basal deuterostomes that share key molecular components of innate immunity with vertebrates. They are a powerful model for the study of innate immune system evolution and function, especially during early development. Here we characterize the morphology and associated molecular markers of larval immune cell types in a newly developed model sea urchin, Lytechinus pictus. We then challenge larvae through infection with an established pathogenic Vibrio and characterize phenotypic and molecular responses. We contrast these to the previously described immune responses of the purple sea urchin Strongylocentrotus purpuratus . The results revealed shared cellular morphologies and homologs of known pigment cell immunocyte markers ( PKS, srcr142 ) but a striking absence of subsets of perforin‐like macpf genes in blastocoelar cell immunocytes. We also identified novel patterning of cells expressing a scavenger receptor cysteine rich (SRCR) gene in the coelomic pouches of the larva (the embryonic stem cell niche). The SRCR signal becomes further enriched in both pouches in response to bacterial infection. Collectively, these results provide a foundation for the study of immune responses in L. pictus. The characterization of the larval immune system of this rapidly developing and genetically enabled sea urchin species will facilitate more sophisticated studies of innate immunity and the crosstalk between the immune system and development.more » « less
-
Phenotypic plasticity and adaptive evolution enable population persistence in response to global change. However, there are few experiments that test how these processes interact within and across generations, especially in marine species with broad distributions experiencing spatially and temporally variable temperature and p CO 2 . We employed a quantitative genetics experiment with the purple sea urchin, Strongylocentrotus purpuratus , to decompose family-level variation in transgenerational and developmental plastic responses to ecologically relevant temperature and p CO 2 . Adults were conditioned to controlled non-upwelling (high temperature, low p CO 2 ) or upwelling (low temperature, high p CO 2 ) conditions. Embryos were reared in either the same conditions as their parents or the crossed environment, and morphological aspects of larval body size were quantified. We find evidence of family-level phenotypic plasticity in response to different developmental environments. Among developmental environments, there was substantial additive genetic variance for one body size metric when larvae developed under upwelling conditions, although this differed based on parental environment. Furthermore, cross-environment correlations indicate significant variance for genotype-by-environment interactive effects. Therefore, genetic variation for plasticity is evident in early stages of S. purpuratus , emphasizing the importance of adaptive evolution and phenotypic plasticity in organismal responses to global change.more » « less
-
Ocean warming is increasing organismal oxygen demand, yet at the same time the ocean’s oxygen supply is decreasing. For a patch of habitat to remain viable, there must be a minimum level of environmental oxygen available for an organism to fuel its metabolic demand—quantified as its critical oxygen partial pressure (pO2crit). The temperature-dependence ofpO2critsets an absolute lower boundary on aerobically viable ocean space for a species, yet whether certain life stages or geographically distant populations differ in their temperature-dependent hypoxia tolerance remains largely unknown. To address these questions, we used the purple sea urchinStrongylocentrotus purpuratusas a model species and measuredpO2critfor 3 populations of adult urchins (Clallam Bay, WA [n = 39], Monterey Bay, CA [91], San Diego, CA [34]) spanning 5-22°C and for key embryonic and larval developmental phases (blastula [n = 11], gastrula [21], prism [31], early-pluteus [21], late-pluteus [14], settled [12]) at temperatures of 10-19°C. We found that temperature-dependent hypoxia tolerance is consistent among adult populations exposed to different temperature and oxygen regimes, despite variable basal oxygen demands, suggesting differential capacity to provision oxygen. Moreover, we did not detect evidence for a hypoxia tolerance bottleneck for any developmental phase. Earlier larval phases are associated with higher hypoxia tolerance and greater temperature sensitivity, while this pattern shifts towards lower hypoxia tolerance and reduced temperature sensitivity as larvae develop. Our results indicate that, at least forS. purpuratus,models quantifying aerobically viable habitat based onpO2crit-temperature relationships from a single adult population will conservatively estimate viable habitat.more » « less