Abstract Electroencephalograms (EEG) are invaluable for treating neurological disorders, however, mapping EEG electrode readings to brain activity requires solving a challenging inverse problem. For time series data, the use of regularization quickly becomes intractable for many solvers, and, despite the reconstruction advantages of regularization, -based approaches such as standardized low-resolution brain electromagnetic tomographysLORETAare used in practice. In this work, we formulate EEG source localization as a graphical generalized elastic net inverse problem and present avariable projectedaugmented Lagrangian algorithm (VPAL) suitable for fast EEG source localization. We prove convergence of this solver for a broad class of separable convex, potentially non-smooth functions subject to linear constraints. Leveraging the efficiency of the proposedVPALalgorithm, we introduce a windowed variation,VPAL , that computes time dynamics in sequence suitable for real-time reconstruction. Our proposed methods are compared to state-of-the-art approaches includingsLORETAand other methods for -regularized inverse problems.
more »
« less
Rapid likelihood free inference of compact binary coalescences using accelerated hardware
Abstract We report a gravitational-wave parameter estimation algorithm,AMPLFI, based on likelihood-free inference using normalizing flows. The focus ofAMPLFIis to perform real-time parameter estimation for candidates detected by machine-learning based compact binary coalescence search,Aframe. We present details of our algorithm and optimizations done related to data-loading and pre-processing on accelerated hardware. We train our model using binary black-hole (BBH) simulations on real LIGO-Virgo detector noise. Our model has million trainable parameters with training times h. Based on online deployment on a mock data stream of LIGO-Virgo data,Aframe+AMPLFIis able to pick up BBH candidates and infer parameters for real-time alerts from data acquisition with a net latency of s.
more »
« less
- PAR ID:
- 10552916
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Machine Learning: Science and Technology
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2632-2153
- Format(s):
- Medium: X Size: Article No. 045030
- Size(s):
- Article No. 045030
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of (68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm= Gyr, stellar mass of log(M*/M⊙) = , star formation rate of SFR = M⊙yr−1, stellar metallicity of log(Z*/Z⊙) = , and dust attenuation of mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.more » « less
-
Abstract The cluster mass–richness relation (MRR) is an observationally efficient and potentially powerful cosmological tool for constraining the matter density Ωmand the amplitude of fluctuationsσ8using the cluster abundance technique. We derive the MRR relation usingGalWCat19, a publicly available galaxy cluster catalog we created from the Sloan Digital Sky Survey-DR13 spectroscopic data set. In the MRR, cluster mass scales with richness as . We find that the MRR we derive is consistent with both the IllustrisTNG and mini-Uchuu cosmological numerical simulations, with a slope ofβ≈ 1. We use the MRR we derived to estimate cluster masses from theGalWCat19catalog, which we then use to set constraints on Ωmandσ8. Utilizing the all-member MRR, we obtain constraints of Ωm= andσ8= , and utilizing the red member MRR only, we obtain Ωm= andσ8= . Our constraints on Ωmandσ8are consistent and very competitive with the Planck 2018 results.more » « less
-
Abstract We study the ringdown signal of black holes formed in prompt-collapse binary neutron star mergers. We analyze data from 47 numerical relativity simulations. We show that the and multipoles of the gravitational wave signal are well fitted by decaying damped exponentials, as predicted by black-hole perturbation theory. We show that the ratio of the amplitude in the two modes depends on the progenitor binary mass ratioqand reduced tidal parameter . Unfortunately, the numerical uncertainty in our data is too large to fully quantify this dependency. If confirmed, these results will enable novel tests of general relativity in the presence of matter with next-generation gravitational-wave observatories.more » « less
-
Abstract Introduction: We present an extensive theoretical investigation of the electron impact excitation of doubly-ionized titanium (Ti III) to meet the needs of spectral analysis and plasma modeling. OBJECTIVES: The main objective of this work is to extend the currently scarce database of both structure and collision data for Ti III. METHODS: The calculation was performed in the close-coupling approximation using theB-splineR-matrix method. The multi-configuration Hartree–Fock method in combination withB-spline configuration interaction expansions and the non-orthogonal orbitals technique is employed for accurate descriptions of the target wave functions and adequate accounts of the various interactions between the target states. Relativistic effects are treated at the semi-relativistic Breit-Pauli approximation level. RESULTS: The present close-coupling expansion includes 138 fine-structure levels of Ti III belonging to the , , , ( ), ( ), , and configurations. Comprehensive sets of radiative and electron collisional data are reported for all of the possible transitions between the 138 fine-structure levels. Thermally averaged collision strengths are determined using a Maxwellian distribution for a wide range of temperatures from K to K. The accuracy of the calculated radiative parameters is validated by comparing with available values from the NIST database and previous literature. CONCLUSION: Given the lack of sufficient currently available experimental and theoretical data, the electron impact excitation cross sections of the Ti III fine-structure levels presented here are systematic, extensive, and internally consistent, thus making them suitable for many modeling applications.more » « less
An official website of the United States government
