skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Novel Labeling Method of Physiological-based Pressure Pain Assessment Among Patients With and Without Chronic Low Back Pain
Pain, especially chronic pain, is a complicated and subjective experience, threatening global healthcare as one of the most severe health problems. Traditionally, pain is assessed by Visual Analog Scale to indicate the pain intensity by the patient’s self-report, causing them to become biased by various psychosocial factors. In this study, we performed two distinct labeling methods to assess the pressure pain in Quantitative Sensory Testing and to differentiate healthy controls and chronic low back pain patients: time period labels and percentage timestamp labels. Physiological signals such as blood volume pulse and galvanic skin response were collected. The time period labeling method was to segment via fixed time windows. The percentage timestamp labeling method was to select the timestamp labels based on the percentage of the threshold or the tolerance time. Both methods demonstrate different advantages when visualizing the information of different pain states and different participant groups.  more » « less
Award ID(s):
1838796
PAR ID:
10552938
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
68
Issue:
1
ISSN:
1071-1813
Format(s):
Medium: X Size: p. 456-459
Size(s):
p. 456-459
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundRoughly a quarter of the US population suffers from moderate to severe chronic pain for at least six months in any given year. The complexity of managing chronic pain has encouraged providers to use innovative methods to address it. Research has shown that problem lists are potential tools that support the care of patients with diabetes and chronic kidney disease. ObjectivesTo examine the extent to which the inclusion of chronic pain in a problem list is associated with follow-up specialty pain care. MethodsThe association between chronic pain documentation on the problem list and specialty pain care was investigated in this retrospective cohort study using 4531 patient records. ResultsChronic pain documentation in the problem list was associated with higher odds of receiving specialty pain care. The most common diagnosis was chronic pain (69.7%). A migraine diagnosis was associated with decreased odds of receiving specialty care, and chronic pain syndrome was associated with increased odds of receiving specialty care compared with the other chronic pain groups. ConclusionDocumenting chronic pain on the problem list was associated with a higher likelihood of patients receiving specialty pain care. 
    more » « less
  2. Pain is known to disrupt sleep patterns, and disturbances in sleep can further worsen pain symptoms. Sleep spindles occur during slow wave sleep and have established effects on sensory and affective processing in mammals. A number of chronic neuropsychiatric conditions, meanwhile, are known to alter sleep spindle density. The effect of persistent pain on sleep spindle waves, however, remains unknown, and studies of sleep spindles are challenging due to long period of monitoring and data analysis. Utilizing automated sleep spindle detection algorithms built on deep learning, we can monitor the effect of pain states on sleep spindle activity. In this study, we show that in a chronic pain model in rodents, there is a significant decrease in sleep spindle activity compared to controls. Meanwhile, methods to restore sleep spindles are associated with decreased pain symptoms. These results suggest that sleep spindle density correlates with chronic pain and may be both a potential biomarker for chronic pain and a target for neuromodulation therapy. 
    more » « less
  3. ABSTRACT IMPACT: Understanding how spinal cord stimulation works and who it works best for will improve clinical trial efficacy and prevent unnecessary surgeries. OBJECTIVES/GOALS: Spinal cord stimulation (SCS) is an intervention for chronic low back pain where standard interventions fail to provide relief. However, estimates suggest only 58% of patients achieve at least 50% reduction in their pain. There is no non-invasive method for predicting relief provided by SCS. We hypothesize neural activity in the brain can fill this gap. METHODS/STUDY POPULATION: We tested SCS patients at 3 times points: baseline (pre-surgery), at day 7 during the trial period (post-trial), and 6 months after a permanent system had been implanted. At each time point participants completed 10 minutes of eyes closed, resting electroencephalography (EEG) and self-reported their pain. EEG was collected with the ActiveTwo system and a 128-electrode cap. Patients were grouped based on the percentage change of their pain from baseline to the final visit using a median split (super responders > average responders). Spectral density powerbands were extracted from resting EEG to use as input features for machine learning analyses. We used support vector machines to predict response to SCS. RESULTS/ANTICIPATED RESULTS: Baseline and post-trial EEG data predicted SCS response at 6-months with 95.56% and 100% accuracy, respectively. The gamma band had the highest performance in differentiating responders. Post-trial EEG data best differentiated the groups with feature weighted dipoles being more highly localized in sensorimotor cortex. DISCUSSION/SIGNIFICANCE OF FINDINGS: Understanding how SCS works and who it works best for is the long-term objective of our collaborative research program. These data provide an important first step towards this goal. 
    more » « less
  4. Chronic pain patients lack at-home pain assessment and management tools. The existing chronic-pain mobile applications are either solely relying on self-report pain levels or restricted to formal clinical settings. Our app, abbreviated from an NSF-funded project entitled Novel Computational Methods for Continuous Objective Multimodal Pain Assessment Sensing System (COMPASS), is a multi-dimensional pain app that collects physiological signals to predict objective pain levels and trace daily at-home activities by incorporating a daily check-in section. We conducted a usability test with 33 healthy participants under pain conditions. The results provided initial support for the validity of the signals in predicting internalizing pain levels among the participants. With further development and testing, we believe the COMPASS app system has the potential to be used by both patients and clinicians as an additional tool to better assess and manage pain, especially for mobile healthcare applications. 
    more » « less
  5. Timely detection of horse pain is important for equine welfare. Horses express pain through their facial and body behavior, but may hide signs of pain from unfamiliar human observers. In addition, collecting visual data with detailed annotation of horse behavior and pain state is both cumbersome and not scalable. Consequently, a pragmatic equine pain classification system would use video of the unobserved horse and weak labels. This paper proposes such a method for equine pain classification by using multi-view surveillance video footage of unobserved horses with induced orthopaedic pain, with temporally sparse video level pain labels. To ensure that pain is learned from horse body language alone, we first train a self-supervised generative model to disentangle horse pose from its appearance and background before using the disentangled horse pose latent representation for pain classification. To make best use of the pain labels, we develop a novel loss that formulates pain classification as a multi-instance learning problem. Our method achieves pain classification accuracy better than human expert performance with 60% accuracy. The learned latent horse pose representation is shown to be viewpoint covariant, and disentangled from horse appearance. Qualitative analysis of pain classified segments shows correspondence between the pain symptoms identified by our model, and equine pain scales used in veterinary practice. 
    more » « less