Abstract In the upcoming decades, one of the primary objectives in exoplanet science is to search for habitable planets and signs of extraterrestrial life in the Universe. Signs of life can be indicated by thermal-dynamical imbalance in terrestrial planet atmospheres. O2and CH4in the modern Earth’s atmosphere are such signs, commonly termed biosignatures. These biosignatures in exoplanetary atmospheres can potentially be detectable through high-contrast imaging instruments on future extremely large telescopes. To quantify the signal-to-noise ratio (S/N) with extremely large telescopes, we select up to 10 nearby rocky planets and simulate medium-resolution (R∼ 1000) direct imaging of these planets using the Mid-infrared ELT Imager and Spectrograph (ELT/METIS, 3–5.6μm) and the High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (ELT/HARMONI, 0.5–2.45μm). We calculate the S/N for the detection of biosignatures including CH4, O2, H2O, and CO2. Our results show that GJ 887 b has the highest detection of S/N for biosignatures, and Proxima Cen b exhibits the only detectable CO2among the targets for ELT/METIS direct imaging. We also investigate the TRAPPIST-1 system, the archetype of nearby transiting rocky planet systems, and compare the biosignature detection of transit spectroscopy with JWST versus direct spectroscopy with ELT/HARMONI. Our findings indicate JWST is more suitable for detecting and characterizing the atmospheres of transiting planet systems such as TRAPPIST-1 that are relatively further away and have smaller angular separations than more nearby nontransiting planets.
more »
« less
Updated Forecast for TRAPPIST-1 Times of Transit for All Seven Exoplanets Incorporating JWST Data
Abstract The TRAPPIST-1 system has been extensively observed with JWST in the near-infrared with the goal of detecting atmospheric transit transmission spectra of these temperate, Earth-sized exoplanets. A byproduct has been much more precise times of transit compared with prior available data from Spitzer, Hubble Space Telescope, or ground-based telescopes. In this note we use 23 new timing measurements of all seven planets in the near-infrared from five JWST observing programs to better forecast and constrain the future times of transit in this system. In particular, we note that the transit times of TRAPPIST-1h have drifted significantly from a prior published analysis by up to tens of minutes. Our newer forecast has a higher precision, with uncertainties ranging from 7 to 105 s during JWST Cycles 4 and 5. This forecast will help to improve planning of future observations of the TRAPPIST-1 planets, while we postpone a full dynamical analysis to future work.
more »
« less
- Award ID(s):
- 1907342
- PAR ID:
- 10552946
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 8
- Issue:
- 10
- ISSN:
- 2515-5172
- Format(s):
- Medium: X Size: Article No. 274
- Size(s):
- Article No. 274
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The launch of JWST has ushered in a new era of high-precision infrared astronomy, allowing us to probe nearby white dwarfs for cold dust, exoplanets, and tidally heated exomoons. While previous searches for these exoplanets have successfully ruled out companions as small as 7–10 Jupiter masses (MJup), no instrument prior to JWST has been sensitive to the likely more common sub-Jovian-mass planets around white dwarfs. In this paper, we present the first multiband photometry (F560W, F770W, F1500W, F2100W) taken of WD 2149+021 with the Mid-Infrared Instrument on JWST. After a careful search for both resolved and unresolved planets, we do not identify any compelling candidates around WD 2149+021. Our analysis indicates that we are sensitive to companions as small as ∼0.5MJupoutwards of 1.″263 (28.3 au) and ∼1.0MJupat the innermost working angle (0.″654, 14.7 au) at 3 Gyr with 5σconfidence, placing significant constraints on any undetected companions around this white dwarf. The results of these observations emphasize the exciting future of sub-Jovian planet detection limits by JWST, which can begin to constrain how often these planets survive their host stars' evolution.more » « less
-
Abstract The spectroscopic characterization of terrestrial exoplanets over a wide spectral range from the near- to the mid-infrared will be made possible for the first time with the JWST. One challenge is that it is not known a priori whether such planets possess optically thick atmospheres or even any atmospheres altogether. However, this challenge also presents an opportunity, the potential to detect the surface of an extrasolar world. This study explores the feasibility of characterizing with the JWST the atmosphere and surface of LHS 3844b, the highest signal-to-noise rocky thermal emission target among planets that are cool enough to have nonmolten surfaces. We model the planetary emission, including the spectral signal of both the atmosphere and surface, and we explore all scenarios that are consistent with the existing Spitzer 4.5 μ m measurement of LHS 3844b from Kreidberg et al. In summary, we find a range of plausible surfaces and atmospheres that are within 3 σ of the observationless reflective metal-rich, iron-oxidized, and basaltic compositions are allowed, and atmospheres are restricted to a maximum thickness of 1 bar, if near-infrared absorbers at ≳100 ppm are included. We further make predictions on the observability of surfaces and atmospheres and find that a small number (∼3) of eclipse observations should suffice to differentiate between surface and atmospheric features. We also perform a Bayesian retrieval analysis on simulated JWST data and find that the surface signal may make it harder to precisely constrain the abundance of atmospheric species and may falsely induce a weak H 2 O detection.more » « less
-
Abstract Although all-sky surveys have led to the discovery of dozens of young planets, little is known about their atmospheres. Here, we present multiwavelength transit data for the super-Neptune sized exoplanet, K2-33b—the youngest (∼10 Myr) transiting exoplanet to date. We combined photometric observations of K2-33 covering a total of 33 transits spanning >2 yr, taken from K2, MEarth, the Hubble Space Telescope (HST), and Spitzer. The transit photometry spanned from the optical to the near-infrared (0.6–4.5μm), enabling us to construct a transmission spectrum of the planet. We find that the optical transit depths are nearly a factor of 2 deeper than those from the near-infrared. This difference holds across multiple data sets taken over years, ruling out issues of data analysis and unconstrained systematics. Surface inhomogeneities on the young star can reproduce some of the difference, but required spot coverage fractions (>60%) are ruled out by the observed stellar spectrum (<20%). We find a better fit to the transmission spectrum using photochemical hazes, which were predicted to be strong in young, moderate-temperature, and large-radius planets like K2-33b. A tholin haze with CO as the dominant gaseous carbon carrier in the atmosphere can reasonably reproduce the data with small or no stellar surface inhomogeneities, consistent with the stellar spectrum. The HST data quality is insufficient for the detection of any molecular features. More observations would be required to fully characterize the hazes and spot properties and confirm the presence of CO suggested by current data.more » « less
-
Abstract Recently, the first JWST measurement of thermal emission from a rocky exoplanet was reported. The inferred dayside brightness temperature of TRAPPIST-1 b at 15 μ m is consistent with the planet having no atmosphere and therefore no mechanism by which to circulate heat to its nightside. In this Letter, we compare TRAPPIST-1 b's measured secondary eclipse depth to predictions from a suite of self-consistent radiative-convective equilibrium models in order to quantify the maximum atmospheric thickness consistent with the observation. We find that plausible atmospheres (i.e., those that contain at least 100 ppm CO 2 ) with surface pressures greater than 0.3 bar are ruled out at 3 σ , regardless of the choice of background atmosphere, and a Mars-like thin atmosphere with surface pressure 6.5 mbar composed entirely of CO 2 is also ruled out at 3 σ . Thicker atmospheres of up to 10 bar (100 bar) are consistent with the data at 1 σ (3 σ ) only if the atmosphere lacks any strong absorbers across the mid-IR wavelength range—a scenario that we deem unlikely. We additionally model the emission spectra for bare-rock planets of various compositions. We find that a basaltic, metal-rich, and Fe-oxidized surface best matches the measured eclipse depth to within 1 σ , and the best-fit gray albedo is 0.02 ± 0.11. We conclude that planned secondary eclipse observations at 12.8 μ m will serve to validate TRAPPIST-1 b's high observed brightness temperature, but are unlikely to further distinguish among the consistent atmospheric and bare-rock scenarios.more » « less
An official website of the United States government
