skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A MIRI Search for Planets and Dust around WD 2149+021
Abstract The launch of JWST has ushered in a new era of high-precision infrared astronomy, allowing us to probe nearby white dwarfs for cold dust, exoplanets, and tidally heated exomoons. While previous searches for these exoplanets have successfully ruled out companions as small as 7–10 Jupiter masses (MJup), no instrument prior to JWST has been sensitive to the likely more common sub-Jovian-mass planets around white dwarfs. In this paper, we present the first multiband photometry (F560W, F770W, F1500W, F2100W) taken of WD 2149+021 with the Mid-Infrared Instrument on JWST. After a careful search for both resolved and unresolved planets, we do not identify any compelling candidates around WD 2149+021. Our analysis indicates that we are sensitive to companions as small as ∼0.5MJupoutwards of 1.″263 (28.3 au) and ∼1.0MJupat the innermost working angle (0.″654, 14.7 au) at 3 Gyr with 5σconfidence, placing significant constraints on any undetected companions around this white dwarf. The results of these observations emphasize the exciting future of sub-Jovian planet detection limits by JWST, which can begin to constrain how often these planets survive their host stars' evolution.  more » « less
Award ID(s):
2205736
PAR ID:
10505810
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
167
Issue:
6
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 257
Size(s):
Article No. 257
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the discovery of two directly imaged, giant planet candidates orbiting the metal-rich, hydrogen atmosphere white dwarfs WD 1202−232 and WD 2105−82. JWST’s Mid-Infrared Instrument (MIRI) data on these two stars show a nearby resolved source at a projected separation of 11.47 and 34.62 au, respectively. Assuming the planets formed at the same time as their host stars, with total ages of 5.3 and 1.6 Gyr, the MIRI photometry is consistent with giant planets with masses ≈1–7MJup. The probability of both candidates being false positives due to red background sources is approximately 1 in 3000. If confirmed, these would be the first directly imaged planets that are similar in both age and separation to the giant planets in our own solar system, and they would demonstrate that widely separated giant planets like Jupiter survive stellar evolution. Giant planet perturbers are widely used to explain the tidal disruption of asteroids around metal-polluted white dwarfs. Confirmation of these two planet candidates with future MIRI imaging would provide evidence that directly links giant planets to metal pollution in white dwarf stars. 
    more » « less
  2. Abstract Infrared-faint white dwarfs are cool white dwarfs exhibiting significant infrared flux deficits, most often attributed to collision-induced absorption (CIA) from H2–He in mixed hydrogen–helium atmospheres. We present James Webb Space Telescope (JWST) near- and mid-infrared spectra of three such objects using Near-Infrared Spectrograph (0.6–5.3μm) and Mid-Infrared Instrument (5–14μm): LHS 3250, WD J1922+0233, and LHS 1126. Surprisingly, for LHS 3250, we detect no H2–He CIA absorption at 2.4μm, instead observing an unexpected small flux bump at this wavelength. WD J1922+0233 exhibits the anticipated strong absorption feature centered at 2.4μm, but with an unexpected narrow emission-like feature inside this absorption band. LHS 1126 shows no CIA features and follows aλ−2power law in the mid-infrared. LHS 1126's lack of CIA features suggests a very low hydrogen abundance, with its infrared flux depletion likely caused by He–He–He CIA. For LHS 3250 and WD J1922+0233, the absence of a 1.2μm CIA feature in both stars argues against ultracool temperatures, supporting recent suggestions that infrared-faint (IR-faint) white dwarfs are warmer and more massive than previously thought. This conclusion is further solidified by Keck near-infrared spectroscopy of seven additional objects. We explore possible explanations for the unexpected emission-like features in both stars, and temperature inversions above the photosphere emerge as a promising hypothesis. Such inversions may be common among the IR-faint population, and since they significantly affect the infrared spectral energy distribution, this would impact their photometric fits. Further JWST observations are needed to confirm the prevalence of this phenomenon and guide the development of improved atmospheric models. 
    more » « less
  3. Abstract We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16μm. At a separation of ∼0.″82 (87 31 + 108 au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σcontrast limits of ∼1 × 10−5and ∼2 × 10−4at 1″ for NIRCam at 4.4μm and MIRI at 11.3μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3MJupbeyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by aBT-SETTLatmospheric model from 1 to 16μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained between log L bol / L = −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2MJup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail. 
    more » « less
  4. ABSTRACT We demonstrate that the James Webb Space Telescope (JWST) can detect infrared (IR) excess from the blended light spectral energy distribution of spatially unresolved terrestrial exoplanets orbiting nearby white dwarfs. We find that JWST is capable of detecting warm (habitable-zone; Teq = 287 K) Earths or super-Earths and hot (400–1000 K) Mercury analogues in the blended light spectrum around the nearest 15 isolated white dwarfs with 10 h of integration per target using MIRI’s medium-resolution spectrograph (MRS). Further, these observations constrain the presence of a CO2-dominated atmosphere on these planets. The technique is nearly insensitive to system inclination, and thus observation of even a small sample of white dwarfs could place strong limits on the occurrence rates of warm terrestrial exoplanets around white dwarfs in the solar neighbourhood. We find that JWST can also detect exceptionally cold (100–150 K) Jupiter-sized exoplanets via MIRI broad-band imaging at $$\lambda = 21\, \mathrm{\mu m}$$ for the 34 nearest (<13 pc) solitary white dwarfs with 2 h of integration time per target. Using IR excess to detect thermal variations with orbital phase or spectral absorption features within the atmosphere, both of which are possible with long-baseline MRS observations, would confirm candidates as actual exoplanets. Assuming an Earth-like atmospheric composition, we find that the detection of the biosignature pair O3+CH4 is possible for all habitable-zone Earths (within 6.5 pc; six white dwarf systems) or super-Earths (within 10 pc; 17 systems) orbiting white dwarfs with only 5–36 h of integration using MIRI’s low-resolution spectrometer. 
    more » « less
  5. ABSTRACT This work combines spectroscopic and photometric data of the polluted white dwarf WD 0141−675, which has a now retracted astrometric super-Jupiter candidate, and investigates the most promising ways to confirm Gaia astrometric planetary candidates and obtain follow-up data. Obtaining precise radial velocity measurements for white dwarfs is challenging due to their intrinsic faint magnitudes, lack of spectral absorption lines, and broad spectral features. However, dedicated radial velocity campaigns are capable of confirming close-in giant exoplanets (a few MJup) around polluted white dwarfs, where additional metal lines aid radial velocity measurements. Infrared emission from these giant exoplanets is shown to be detectable with JWST Mid-Infrared Instrument (MIRI) and will provide constraints on the formation of the planet. Using the initial Gaia astrometric solution for WD 0141−675 as a case study, if there were a planet with a 33.65 d period or less with a nearly edge-on orbit, (1) ground-based radial velocity monitoring limits the mass to <15.4 MJup, and (2) space-based infrared photometry shows a lack of infrared excess and in a cloud-free planetary cooling scenario, a substellar companion would have to be <16 MJup and be older than 3.7 Gyr. These results demonstrate how radial velocities and infrared photometry can probe the mass of the objects producing some of the astrometric signals, and rule out parts of the brown dwarf and planet mass parameter space. Therefore, combining astrometric data with spectroscopic and photometric data is crucial to both confirm and characterize astrometric planet candidates around white dwarfs. 
    more » « less