skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 3, 2026

Title: Pi-extended hypervalent iodine macrocycles and their supramolecular assembly with Buckminsterfullerene
A series of valine functionalized supramolecular hypervalent iodine macrocycles (HIMs) with enlarged aromatic cores, including naphthalene and anthraquinone, have been synthesized. Single crystal analysis shows the macrocycles consist of a slightly distorted cyclic planner interior with three carbonyl oxygens from the amino acid residues facing towards the center of the macrocycle and all three alkyl groups above one plane. Owing to the enlarged aromatic core, the naphthalene-based HIMs were successfully co-crystallized with Buckminsterfullerene (C60) into a long-range columnar supramolecular structure. The assembled architecture displays a long-range pattern between HIM and C60 in a 2 : 3 ratio, respectively. Disassembly of the HIMs can be accomplished by adding anions of tetrabutylammonium (TBA) salts that selectively bind with the electron deficient iodine center in HIM systems. A comparative study of the associations constants and the binding energies for different aromatic-based HIMs with TBA(Cl) and TBA(Br) is presented.  more » « less
Award ID(s):
2003654
PAR ID:
10566294
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
13
Issue:
2
ISSN:
2050-7526
Page Range / eLocation ID:
842-848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study explores the dynamic self-assembly and disassembly of hypervalent iodine-based macrocycles (HIMs) guided by secondary bonding interactions. The reversible disassembly and reassembly of HIMs are facilitated through anion binding via the addition of tetrabutylammonium (TBA) salts or removal of the anion by the addition of silver nitrate. The association constants for HIM monomers with TBA(Cl) and TBA(Br) are calculated and show a correlation with the strength of the iodine–anion bond. A unique tetracoordinate hypervalent iodine-based compound was identified as the disassembled monomer. Last, the study reveals the dynamic bonding nature of these macrocycles in solution, allowing for rearrangement and participation in dynamic bonding chemistry. 
    more » « less
  2. Despite remarkable progress in photoconversion efficiency, the toxicity of lead-based hybrid perovskites remains an important issue hindering their applications in consumer optoelectronic devices, such as solar cells, LED displays, and photodetectors. For that reason, lead-free metal halide complexes have attracted great attention as alternative optoelectronic materials. In this work, we demonstrate that reactions of two aromatic diamines with iodine in hydroiodic acid produced phenylenediammonium (PDA) and N,N-dimethyl-phenylenediammonium (DMPDA) triiodides, PDA(I3)2⋅2H2O and DMPDA(I3)I, respectively. If the source of bismuth was added, they were converted into previously reported PDA(BiI4)2⋅I2 and new (DMPDA)2(BiI6)(I3)⋅2H2O, having band gaps of 1.45 and 1.7 eV, respectively, which are in the optimal range for efficient solar light absorbers. All four compounds presented organic–inorganic hybrids, whose supramolecular structures were based on a variety of intermolecular forces, including (N)H⋅⋅⋅I and (N)H⋅⋅⋅O hydrogen bonds as well as I⋅⋅⋅I secondary and weak interactions. Details of their molecular and supramolecular structures are discussed based on single-crystal X-ray diffraction data, thermal analysis, and Raman and optical spectroscopy. 
    more » « less
  3. Crystalline porous frameworks, such as covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and hydrogen-bonded organic frameworks (HOFs), have demonstrated exceptional potential in diverse applications, including gas adsorption/separation, catalysis, sensing, electronic devices, etc. However, the building blocks for constructing ordered frameworks are typically limited to multisubstituted aromatic small molecules, and uncontrolled interpenetration has remained a long-standing challenge in the field. Shape-persistent macrocycles and molecular cages have garnered significant attention in supramolecular chemistry and materials science due to their unique structures and novel properties. Using such preporous shape-persistent 2D macrocycles or 3D cages as building blocks to construct extended networks is particularly appealing. This macrocycle-to-framework/cage-to-framework hierarchical assembly approach not only mitigates the issue of interpenetration but also enables the integration of diverse properties in an emergent fashion. Since our demonstration of the first organic cage framework (OCF) in 2011 and the first macrocycle-based ionic COFs (ICOFs) in 2015, substantial advancements have been made over the past decade. In this Account, we will summarize our contributions to the development of crystalline porous frameworks, consisting of shape-persistent macrocycles and molecular cages as preporous building blocks, via hierarchical dynamic covalent assembly. We will begin by reviewing representative design strategies and the synthesis of shape-persistent macrocycles and molecular cages from small molecule-based primary building blocks, emphasizing the critical role of dynamic covalent chemistry (DCvC). Next, we will discuss the further assembly of preporous macrocycle/cage-based secondary building blocks into extended frameworks, followed by an overview of their properties and applications. Finally, we will highlight the current challenges and future directions for this hierarchical assembly approach in the synthesis of crystalline porous frameworks. This Account offers valuable insights into the design and synthesis of functional porous frameworks, contributing to the advancement of this important field. 
    more » « less
  4. New routes to the formation of macrocyclic molecules are of high interest to the supramolecular chemistry community and the chemistry community at large. Here we describe the incorporation of heterocyclic core units into discrete macrocycles via the utilization of a pnictogen-assisted self-assembly technique. This method allows for the rapid and efficient formation of discreet macrocyclic units from simple dithiol precursors in high yields with good control over macrocycle size. Up to this point, this technique has been reported on primarily benzylic thiol systems with very little incorporation of endohedral heteroatoms in the resulting assemblies. This study demonstrates the effective incorporation of heterocyclic core molecules allowing for the formation of a more functional cavity, resulting in the formation and crystallization of novel furan- and thiophene-based disulfide dimer and trimer macrocycles, respectively, that are isolated from a range of other larger discrete macrocycles that assemble as well. These disulfide macrocycles can be trapped as their more kinetically stable thioether congeners upon sulfur extrusion. 
    more » « less
  5. The effects of C60 incorporated in polymannose‐based resistive switching memory have been systematically investigated for the first time in bioorganic‐based resistive switching memory. C60 with different concentrations (0–7 wt%) is dispersed in polymannose precursor, drop‐casted on ITO/PET substrate, and dried to form a thin film. Electrochemically inert Au–Pd is used as top electrode. The devices with embedded C60 show better endurance and stability. Read memory window decreases and ON/OFF ratio increases as the concentration of C60 increases. Stable retention time up to 10 years is achieved for all of the devices except the one with 7 wt% C60. Based on zeta potential measurement, polymannose is more negatively charged than C60. Hence, C60 functions as an effective interlock that bridges between long molecular chains of polymannose and enhances the resistive switching properties of the polymannose thin film. 
    more » « less