Light-absorbing secondary organic aerosols (SOAs), also known as secondary brown carbon (BrC), are major components of wildfire smoke that can have a significant impact on the climate system; however, how environmental factors such as relative humidity (RH) influence their formation is not fully understood, especially for heterocyclic precursors. We conducted chamber experiments to investigate secondary BrC formation from the nighttime oxidation of furan and pyrrole, two primary heterocyclic precursors in wildfires, in the presence of pre-existing particles at RH < 20% and ∼ 50%. Our findings revealed that increasing RH significantly affected the size distribution dynamics of both SOAs, with pyrrole SOA showing a stronger potential to generate ultrafine particles via intensive nucleation processes. Higher RH led to increased mass fractions of oxygenated compounds in both SOAs, suggesting enhanced gas-phase and/or multiphase oxidation under humid conditions. Moreover, higher RH reduced the mass absorption coefficients of both BrC, contrasting with those from homocyclic precursors, due to the formation of non-absorbing high-molecular-weight oxygenated compounds and the decreasing mass fractions of molecular chromophores. Overall, our findings demonstrate the unique RH dependence of secondary BrC formation from heterocyclic precursors, which may critically modulate the radiative effects of wildfire smoke on climate change.
more »
« less
Contribution of Carbonyl Chromophores in Secondary Brown Carbon from Nighttime Oxidation of Unsaturated Heterocyclic Volatile Organic Compounds
The light absorption properties of brown carbon (BrC), which are linked to molecular chromophores, may play a significant role in the Earth’s energy budget. While nitroaromatic compounds have been identified as strong chromophores in wildfire-driven BrC, other types of chromophores remain to be investigated. Given the electron-withdrawing nature of carbonyls ubiquitous in the atmosphere, we characterized carbonyl chromophores in BrC samples from the nighttime oxidation of furan and pyrrole derivatives, which are important but understudied precursors of secondary organic aerosols primarily found in wildfire emissions. Various carbonyl chromophores were characterized and quantified in BrC samples, and their ultraviolet–visible spectra were simulated by using time-dependent density functional theory. Our findings suggest that chromophores with carbonyls bonded to nitrogen (i.e., imides and amides) derived from N-containing heterocyclic precursors substantially contribute to BrC light absorption. The quantified N-containing carbonyl chromophores contributed to over 40% of the total light absorption at wavelengths below 350 nm and above 430 nm in pyrrole BrC. The contributions of chromophores to total light absorption differed significantly by wavelength, highlighting their divergent importance in different wavelength ranges. Overall, our findings highlight the significance of carbonyl chromophores in secondary BrC and underscore the need for further investigation.
more »
« less
- Award ID(s):
- 1953905
- PAR ID:
- 10553048
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Environmental Science & Technology
- Volume:
- 57
- Issue:
- 48
- ISSN:
- 0013-936X
- Page Range / eLocation ID:
- 20085 to 20096
- Subject(s) / Keyword(s):
- Subjects: Carbon, Carbonyls, Chromophores, Light absorption, Pyrroles Keywords: furan and pyrrole derivatives, secondary organic aerosols, imides and amides, light absorption contribution, wavelength dependency
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nitrogen-containing heterocyclic volatile organic compounds (VOCs) are important components of wildfire emissions that are readily reactive toward nitrate radicals (NO3) during nighttime, but the oxidation mechanism and the potential formation of secondary organic aerosol (SOA) and brown carbon (BrC) are unclear. Here, NO3 oxidation of three nitrogen-containing heterocyclic VOCs, pyrrole, 1-methylyrrole (1-MP), and 2-methylpyrrole (2-MP), was investigated in chamber experiments to determine the effect of precursor structures on SOA and BrC formation. The SOA chemical compositions and the optical properties were analyzed using a suite of online and offline instrumentation. Dinitro- and trinitro-products were found to be the dominant SOA constituents from pyrrole and 2-MP, but not observed from 1-MP. Furthermore, the SOA from 2-MP and pyrrole showed strong light absorption, while that from 1-MP were mostly scattering. From these results, we propose that NO3-initiated hydrogen abstraction from the 1-position in pyrrole and 2-MP followed by radical shift and NO2 addition leads to light-absorbing nitroaromatic products. In the absence of a 1-position hydrogen, NO3 addition likely dominates the 1-MP chemistry. We also estimate that the total SOA mass and light absorption from pyrrole and 2-MP are comparable to those from phenolic VOCs and toluene in biomass burning, underscoring the importance of considering nighttime oxidation of pyrrole and methylpyrroles in air quality and climate models.more » « less
-
null (Ed.)The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs 405 ) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs.more » « less
-
Abstract. Light absorbing organic carbon, or brown carbon (BrC), can be a significantcontributor to the visible light absorption budget. However, the sources ofBrC and the contributions of BrC to light absorption are not wellunderstood. Biomass burning is thought to be a major source of BrC.Therefore, as part of the WE-CAN (Western Wildfire Experiment for CloudChemistry, Aerosol Absorption and Nitrogen) study, BrC absorption data werecollected on board the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) C-130 aircraft as it intercepted smoke fromwildfires in the western US in July–August 2018. BrC absorptionmeasurements were obtained in near real-time using two techniques. The firstcoupled a particle-into-liquid sampler (PILS) with a liquid waveguidecapillary cell and a total organic carbon analyzer for measurements ofwater-soluble BrC absorption and WSOC (water-soluble organic carbon). Thesecond employed a custom-built photoacoustic aerosol absorption spectrometer(PAS) to measure total absorption at 405 and 660 nm. The PAS BrC absorption at 405 nm (PAS total Abs 405 BrC) was calculated by assuming the absorption determined by the PAS at 660 nm was equivalent to the black carbon (BC) absorption and the BC aerosol absorption Ångström exponent was 1. Data from the PILS and PAS were combined to investigate the water-soluble vs. total BrC absorption at 405 nm in the various wildfire plumes sampled during WE-CAN. WSOC, PILS water-soluble Abs 405, and PAS total Abs 405 tracked each other in and out of the smoke plumes. BrC absorption was correlated with WSOC (R2 value for PAS =0.42 and PILS =0.60) and CO (carbon monoxide) (R2 value for PAS =0.76 and PILS =0.55) for all wildfires sampled. The PILS water-soluble Abs 405 was corrected for thenon-water-soluble fraction of the aerosol using the calculated UHSAS(ultra-high-sensitivity aerosol spectrometer) aerosol mass. The correctedPILS water-soluble Abs 405 showed good closure with the PAS total Abs 405BrC with a factor of ∼1.5 to 2 difference. This differencewas explained by particle vs. bulk solution absorption measured by the PASvs. PILS, respectively, and confirmed by Mie theory calculations. DuringWE-CAN, ∼ 45 % (ranging from 31 % to 65 %) of the BrCabsorption was observed to be due to water-soluble species. The ratio of BrC absorption to WSOC or ΔCO showed no clear dependence on firedynamics or the time since emission over 9 h.more » « less
-
Abstract. To better understand the effects of wildfires on air quality andclimate, it is important to assess the occurrence of chromophoric compoundsin smoke and characterize their optical properties. This study explores themolecular composition of light-absorbing organic aerosol, or brown carbon(BrC), sampled at the Missoula Fire Sciences laboratory as a part of theFIREX Fall 2016 lab intensive. A total of 12 biomass fuels from different planttypes were tested, including gymnosperm (coniferous) and angiosperm(flowering) plants and different ecosystem components such as duff, litter,and canopy. Emitted biomass burning organic aerosol (BBOA) particles werecollected onto Teflon filters and analyzed offline using high-performanceliquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer(HPLC–PDA–HRMS). Separated BrC chromophores were classified by theirretention times, absorption spectra, integrated absorbance in the near-UVand visible spectral range (300–700 nm), and chemical formulas from theaccurate m∕z measurements. BrC chromophores were grouped into the followingclasses and subclasses: lignin-derived products, which include lignin pyrolysisproducts; distillation products, which include coumarins and flavonoids;nitroaromatics; and polycyclic aromatic hydrocarbons (PAHs). The observedclasses and subclasses were common across most fuel types, although specific BrCchromophores varied based on plant type (gymnosperm or angiosperm) andecosystem component(s) burned. To study the stability of the observed BrCcompounds with respect to photodegradation, BBOA particle samples wereirradiated directly on filters with near UV (300–400 nm) radiation, followedby extraction and HPLC–PDA–HRMS analysis. Lifetimes of individual BrCchromophores depended on the fuel type and the corresponding combustioncondition. Lignin-derived and flavonoid classes of BrC generally hadthe longest lifetimes with respect to UV photodegradation. Moreover,lifetimes for the same type of BrC chromophores varied depending on biomassfuel and combustion conditions. While individual BrC chromophoresdisappeared on a timescale of several days, the overall light absorption bythe sample persisted longer, presumably because the condensed-phasephotochemical processes converted one set of chromophores into anotherwithout complete photobleaching or from undetected BrC chromophores thatphotobleached more slowly. To model the effect of BrC on climate, it isimportant to understand the change in the overall absorption coefficientwith time. We measured the equivalent atmospheric lifetimes of the overallBrC absorption coefficient, which ranged from 10 to 41 d, with subalpinefir having the shortest lifetime and conifer canopies, i.e., juniper, havingthe longest lifetime. BrC emitted from biomass fuel loads encompassingmultiple ecosystem components (litter, shrub, canopy) had absorptionlifetimes on the lower end of the range. These results indicate thatphotobleaching of BBOA by condensed-phase photochemistry isrelatively slow. Competing chemical aging mechanisms, such as heterogeneousoxidation by OH, may be more important for controlling the rate of BrCphotobleaching in BBOA.more » « less
An official website of the United States government

