skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fate of the Caribou: Studying caribou and climate, with communities
Award ID(s):
2127271
PAR ID:
10553091
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Xàgots’eèhk’ǫ̀ Journal
Date Published:
Journal Name:
Xàgots’eèhk’ǫ̀ Journal
Volume:
2
Issue:
2
ISSN:
NA
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Caribou (Rangifer tarandus) undergo exceptionally large, annual synchronized migrations of thousands of kilometers, triggered by their shared environmental stimuli. The proximate triggers of those migrations remain mysterious, though snow characteristics play an important role due to their influence on the mechanics of locomotion. We investigate whether the snow melt–refreeze status relates to caribou movement, using previously collected Global Positioning System (GPS) caribou collar data. We analyzed 117 individual female caribou with >30,000 observations between 2007 and 2016 from the Bathurst herd in Northern Canada. We used a hierarchical model to estimate the beginning, duration, and end of spring migration and compared these statistics against snow pack melt characteristics derived from 37 GHz vertically polarized (37V GHz) Calibrated Enhanced-Resolution Brightness Temperatures (CETB) at 3.125 km resolution. The timing of migration for Bathurst caribou generally tracked the snowmelt onset. The start of migration was closely linked to the main melt onset in the wintering areas, occurring on average 2.6 days later (range −1.9 to 8.4, se 0.28, n = 10). The weighted linear regression was also highly significant (p-value = 0.002, R2=0.717). The relationship between migration arrival times and the main melt onset on the calving grounds (R2 = 0.688, p-value = 0.003), however, had a considerably more variable lag (mean 13.3 d, se 0.67, range 3.1–20.4). No migrations ended before the main melt onset at the calving grounds. Thawing conditions may provide a trigger for migration or favorable conditions that increase animal mobility, and suggest that the snow properties are more important than snow presence. Further work is needed to understand how widespread this is and why there is such a relationship. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract Background Migrations in temperate systems typically have two migratory phases, spring and autumn, and many migratory ungulates track the pulse of spring vegetation growth during a synchronized spring migration. In contrast, autumn migrations are generally less synchronous and the cues driving them remain understudied. Our goal was to identify the cues that migrants use in deciding when to initiate migration and how this is updated while en route . Methods We analyzed autumn migrations of Arctic barren-ground caribou ( Rangifer tarandus ) as a series of persistent and directional movements and assessed the influence of a suite of environmental factors. We fitted a dynamic-parameter movement model at the individual-level and estimated annual population-level parameters for weather covariates on 389 individual-seasons across 9 years. Results Our results revealed strong, consistent effects of decreasing temperature and increasing snow depth on migratory movements, indicating that caribou continuously update their migratory decision based on dynamic environmental conditions. This suggests that individuals pace migration along gradients of these environmental variables. Whereas temperature and snow appeared to be the most consistent cues for migration, we also found interannual variability in the effect of wind, NDVI, and barometric pressure. The dispersed distribution of individuals in autumn resulted in diverse environmental conditions experienced by individual caribou and thus pronounced variability in migratory patterns. Conclusions By analyzing autumn migration as a continuous process across the entire migration period, we found that caribou migration was largely related to temperature and snow conditions experienced throughout the journey. This mechanism of pacing autumn migration based on indicators of the approaching winter is analogous to the more widely researched mechanism of spring migration, when many migrants pace migration with a resource wave. Such a similarity in mechanisms highlights the different environmental stimuli to which migrants have adapted their movements throughout their annual cycle. These insights have implications for how long-distance migratory patterns may change as the Arctic climate continues to warm. 
    more » « less