skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2127271

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Amidst numerous global crises, decision‐makers have recognized the critical need for fact‐based advice, driving unprecedented data collection. However, a significant gap persists between data availability and knowledge generation, primarily due to time and resource constraints. To bridge this gap, we propose involving a novel group of citizen scientists: volunteer code developers.Utilizing the modular, open‐source analysis platform MoveApps, we were able to engage 12 volunteer coders in a challenge to create tools for movement ecology, aimed at animal conservation. These volunteers developed functioning applications capable of analysing animal tracking data to identify stationary behaviour, estimate ranges and movement corridors and assess human–wildlife conflicts using data sets from human infrastructure, such as OpenStreetMap.Engaging citizen scientists in developing code has surfaced three primary challenges: (i) Community Building—attracting the right participants; (ii) Community Involvement—maintaining quality standards and directing tasks effectively; and (iii) Community Retention—ensuring long‐term engagement. We explore strategies to overcome these challenges and share lessons learnt from our coding challenge experience. Our approaches include engaging the community through their own preferred channels, providing an accessible open‐source tool, defining specific use cases in detail, ensuring quality through feedback, fostering self‐organized community exchanges and prominently illustrating the impact of contributions.We also advocate for other disciplines to consider leveraging volunteer involvement, alongside artificial intelligence, for data analysis and generating state‐of‐the‐art, fact‐based insight to address critical issues such as the global decline in biodiversity. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. ABSTRACT Anthropogenic change is reshaping the regulation and stability of animal population dynamics across broad biogeographic gradients. For example, abiotic and biotic interactions can cause gradients in population cycle period and amplitude, but this research is mostly constrained to small mammals. Caribou and reindeer (Rangifer tarandusspp.) are threatened by human‐caused change and are known to fluctuate in population over multidecadal scales. But it is unclear how ecological mechanisms drive these cycles and whether these mechanisms are similar to those found in smaller mammals. Here, we carried out a global biogeographic study ofRangiferpopulation cycles in response to top‐down and bottom‐up mechanisms. We hypothesized that predation and food resources would interact to affect the amplitude and period of population cycles across the species' range. To test this, we used a two‐pronged approach: (1) we conducted a range‐wide statistical analysis of population data from 43Rangiferherds; and (2) we built tri‐trophic mechanistic population models of predator–Rangifer–food interactions. This approach allowed us to merge theoretical and empirical approaches to better understand the drivers of population cycling across space and time. We found statistical evidence for long‐term cyclicity in 19Rangiferpopulations, and some evidence that decreasing food productivity and winter temperatures may have caused increased period length and amplitude across spatial gradients. Our mechanistic model largely agreed with our empirical results, showing that decreased food resources and increased predation can drive more intense cycles over time. These paired empirical and theoretical results suggest that gradients inRangiferpopulation cycles match ecological mechanisms found in smaller mammals. Moreover, human‐caused shifts in climate, food resources, and predators may shiftRangiferpopulation dynamics towards more booms and busts, threatening population persistence. We recommend that dynamic management strategies, in tandem with theoretical and empirical approaches, could be used to better understand and manage population cycles across space and time. 
    more » « less
  3. Abstract The muskox (Ovibos moschatus), an integral component and iconic symbol of arctic biocultural diversity, is under threat by rapid environmental disruptions from climate change. We report a chromosomal-level haploid genome assembly of a muskox from Banks Island in the Canadian Arctic Archipelago. The assembly has a contig N50 of 44.7 Mbp, a scaffold N50 of 112.3 Mbp, a complete representation (100%) of the BUSCO v5.2.2 set of 9225 mammalian marker genes and is anchored to the 24 chromosomes of the muskox. Tabulation of heterozygous single nucleotide variants in our specimen revealed a very low level of genetic diversity, which is consistent with recent reports of the muskox having the lowest genome-wide heterozygosity among the ungulates. While muskox populations are currently showing no overt signs of inbreeding depression, environmental disruptions are expected to strain the genomic resilience of the species. One notable impact of rapid climate change in the Arctic is the spread of emerging infectious and parasitic diseases in the muskox, as exemplified by the range expansion of muskox lungworms, and the recent fatal outbreaks ofErysipelothrix rhusiopathiae, a pathogen normally associated with domestic swine and poultry. As a genomics resource for conservation management of the muskox against existing and emerging disease modalities, we annotated the genes of the major histocompatibility complex on chromosome 2 and performed an initial assessment of the genetic diversity of this complex. This resource is further supported by the annotation of the principal genes of the innate immunity system, genes that are rapidly evolving and under positive selection in the muskox, genes associated with environmental adaptations, and the genes associated with socioeconomic benefits for Arctic communities such as wool (qiviut) attributes. These annotations will benefit muskox management and conservation. 
    more » « less
  4. ABSTRACT Long‐distance migrations are a striking, and strikingly successful, adaptation for highly mobile terrestrial animals in seasonal environments. However, it remains an open question whether migratory animals are more resilient or less resilient to rapidly changing environments. Furthermore, the mechanisms by which animals adapt or modify their migrations are poorly understood. We describe a dramatic shift of over 500 km in the wintering range of the Western Arctic Herd, a large caribou (Rangifer tarandus) herd in northwestern Alaska, an area that is undergoing some of the most rapid warming on Earth. Between 2012 and 2020, caribou switched from reliably wintering in maritime tundra in the southwesternmost portion of their range to more frequently wintering in mountainous areas to the east. Analysis of this range shift, in conjunction with nearly 200 documented mortality events, revealed that it was both broadly adaptive and likely driven by collective memory of poor winter conditions. Before the range shift, overwinter survival in the maritime tundra was high, routinely surpassing 95%, but falling to around 80% even as fewer animals wintered there. Meanwhile, in the increasingly used mountainous portion of the range, survival was intermediate and less variable across years compared to the extremes in the southern winter ranges. Thus, the shift only imperfectly mitigated overall increased mortality rates. The range shift has also been accompanied by changes in seasonal patterns of survival that are consistent with poorer nutritional intake in winter. Unexpectedly, the strongest single predictor of an individual's probability of migrating south was the overall survival of animals in the south in the preceding winter, suggesting that the range shift is in part driven by collective memory. Our results demonstrate the importance and use of collective decision making and memory for a highly mobile species for improving fitness outcomes in a dynamic, changing environment. 
    more » « less
  5. Abstract Changes in vegetation distribution are underway in Arctic and boreal regions due to climate warming and associated fire disturbance. These changes have wide ranging downstream impacts—affecting wildlife habitat, nutrient cycling, climate feedbacks and fire regimes. It is thus critical to understand where these changes are occurring and what types of vegetation are affected, and to quantify the magnitude of the changes. In this study, we mapped live aboveground biomass for five common plant functional types (PFTs; deciduous shrubs, evergreen shrubs, forbs, graminoids and lichens) within Alaska and northwest Canada, every five years from 1985 to 2020. We employed a multi-scale approach, scaling from field harvest data and unmanned aerial vehicle-based biomass predictions to produce wall-to-wall maps based on climatological, topographic, phenological and Landsat spectral predictors. We found deciduous shrub and graminoid biomass were predicted best among PFTs. Our time-series analyses show increases in deciduous (37%) and evergreen shrub (7%) biomass, and decreases in graminoid (14%) and lichen (13%) biomass over a study area of approximately 500 000 km2. Fire was an important driver of recent changes in the study area, with the largest changes in biomass associated with historic fire perimeters. Decreases in lichen and graminoid biomass often corresponded with increasing shrub biomass. These findings illustrate the driving trends in vegetation change within the Arctic/boreal region. Understanding these changes and the impacts they in turn will have on Arctic and boreal ecosystems will be critical to understanding the trajectory of climate change in the region. 
    more » « less
  6. Abstract Consumers must track and acquire resources in complex landscapes. Much discussion has focused on the concept of a ‘resource gradient’ and the mechanisms by which consumers can take advantage of such gradients as they navigate their landscapes in search of resources. However, the concept of tracking resource gradients means different things in different contexts. Here, we take a synthetic approach and consider six different definitions of what it means to search for resources based on density or gradients in density. These include scenarios where consumers change their movement behavior based on the density of conspecifics, on the density of resources, and on spatial or temporal gradients in resources. We also consider scenarios involving non-local perception and a form of memory. Using a continuous space, continuous time model that allows consumers to switch between resource-tracking and random motion, we investigate the relative performance of these six different strategies. Consumers’ success in matching the spatiotemporal distributions of their resources differs starkly across the six scenarios. Movement strategies based on perception and response to temporal (rather than spatial) resource gradients afforded consumers with the best opportunities to match resource distributions. All scenarios would allow for optimization of resource-matching in terms of the underlying parameters, providing opportunities for evolutionary adaptation, and links back to classical studies of foraging ecology. 
    more » « less
  7. Abstract Warming temperatures and advancing spring are affecting annual snow and ice cycles, as well as plant phenology, across the Arctic and boreal regions. These changes may be linked to observed population declines in wildlife, including barren‐ground caribou (Rangifer tarandus), a key species of Arctic environments. We quantified how barren‐ground caribou, characteristically both gregarious and migratory, synchronize births in time and aggregate births in space and investigated how these tactics are influenced by variable weather conditions. We analyzed movement patterns to infer calving dates for 747 collared female caribou from seven herds across northern North America, totaling 1255 calving events over a 15‐year period. By relating these events to local weather conditions during the 1‐year period preceding calving, we examined how weather influenced calving timing and the ability of caribou to reach their central calving area. We documented continental‐scale synchrony in calving, but synchrony was greatest within an individual herd for a given year. Weather conditions before and during gestation had contrasting effects on the timing and location of calving. Notably, a combination of unfavorable weather conditions during winter and spring, including the pre‐calving migration, resulted in a late arrival on the calving area or a failure to reach the greater calving area in time for calving. Though local weather conditions influenced calving timing differently among herds, warm temperatures and low wind speed, which are associated with soft, deep snow, during the spring and pre‐calving migration, generally affected the ability of female caribou to reach central calving areas in time to give birth. Delayed calving may have potential indirect consequences, including reduced calf survival. Overall, we detected considerable variability across years and across herds, but no significant trend for earlier calving by caribou, even as broad indicators of spring and snow phenology trend earlier. Our results emphasize the importance of monitoring the timing and location of calving, and to examine how weather during summer and winter are affecting calving and subsequent reproductive success. 
    more » « less
  8. Competition for resources and space can drive forage selection of large herbivores from the bite through the landscape scale. Animal behaviour and foraging patterns are also influenced by abiotic and biotic factors. Fine‐scale mechanisms of density‐dependent foraging at the bite scale are likely consistent with density‐dependent behavioural patterns observed at broader scales, but few studies have directly tested this assertion. Here, we tested if space use intensity, a proxy of spatiotemporal density, affects foraging mechanisms at fine spatial scales similarly to density‐dependent effects observed at broader scales in caribou. We specifically assessed how behavioural choices are affected by space use intensity and environmental processes using behavioural state and forage selection data from caribou (Rangifer tarandus granti) observed from GPS video‐camera collars using a multivariate discrete‐choice modelling framework. We found that the probability of eating shrubs increased with increasing caribou space use intensity and cover of Salix spp. shrubs, whereas the probability of eating lichen decreased. Insects also affected fine‐scale foraging behaviour by reducing the overall probability of eating. Strong eastward winds mitigated negative effects of insects and resulted in higher probabilities of eating lichen. At last, caribou exhibited foraging functional responses wherein their probability of selecting each food type increased as the availability (% cover) of that food increased. Space use intensity signals of fine‐scale foraging were consistent with density‐dependent responses observed at larger scales and with recent evidence suggesting declining reproductive rates in the same caribou population. Our results highlight potential risks of overgrazing on sensitive forage species such as lichen. Remote investigation of the functional responses of foraging behaviours provides exciting future applications where spatial models can identify high‐quality habitats for conservation. 
    more » « less
  9. Caribou (Rangifer tarandus) undergo exceptionally large, annual synchronized migrations of thousands of kilometers, triggered by their shared environmental stimuli. The proximate triggers of those migrations remain mysterious, though snow characteristics play an important role due to their influence on the mechanics of locomotion. We investigate whether the snow melt–refreeze status relates to caribou movement, using previously collected Global Positioning System (GPS) caribou collar data. We analyzed 117 individual female caribou with >30,000 observations between 2007 and 2016 from the Bathurst herd in Northern Canada. We used a hierarchical model to estimate the beginning, duration, and end of spring migration and compared these statistics against snow pack melt characteristics derived from 37 GHz vertically polarized (37V GHz) Calibrated Enhanced-Resolution Brightness Temperatures (CETB) at 3.125 km resolution. The timing of migration for Bathurst caribou generally tracked the snowmelt onset. The start of migration was closely linked to the main melt onset in the wintering areas, occurring on average 2.6 days later (range −1.9 to 8.4, se 0.28, n = 10). The weighted linear regression was also highly significant (p-value = 0.002, R2=0.717). The relationship between migration arrival times and the main melt onset on the calving grounds (R2 = 0.688, p-value = 0.003), however, had a considerably more variable lag (mean 13.3 d, se 0.67, range 3.1–20.4). No migrations ended before the main melt onset at the calving grounds. Thawing conditions may provide a trigger for migration or favorable conditions that increase animal mobility, and suggest that the snow properties are more important than snow presence. Further work is needed to understand how widespread this is and why there is such a relationship. 
    more » « less