skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short-range-order degree dominated physical and mechanical properties of refractory multi-principal element alloys: a first-principles study
Abstract The degree of short-range order (SRO) can influence the physical and mechanical properties of refractory multi-principal element alloys (RMPEAs). Here, the effect of SRO degree on the atomic configuration and properties of the equiatomic TiTaZr RMPEA is investigated using the first-principles calculations. Their key roles on the lattice parameters, binding energy, elastic properties, electronic structure, and stacking fault energy (SFE) are analyzed. The results show the degree of SRO has a significant effect on the physical and mechanical properties of TiTaZr. During the SRO degree increasing in TiTaZr lattice, the low SRO degree exacerbates the lattice distortion and the high SRO degree reduces the lattice distortion. The high degree of SRO improves the binding energy and elastic stiffness of the TiTaZr. By analyzing the change in charge density, this change is caused by the atomic bias generated during the formation of the SRO, which leading to a change in charge-density thereby affecting the metal bond polarity and inter-atomic forces. The high SRO degree also reduces SFE, which means the capability of plastic deformation of the TiTaZr is enhanced.  more » « less
Award ID(s):
1809640
PAR ID:
10553160
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Physica Scripta
Volume:
99
Issue:
6
ISSN:
0031-8949
Page Range / eLocation ID:
065924
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The enhanced compositional flexibility to incorporate multiple-principal cations in high entropy oxides (HEOs) offers the opportunity to expand boundaries for accessible compositions and unconventional properties in oxides. Attractive functionalities have been reported in some bulk HEOs, which are attributed to the long-range compositional homogeneity, lattice distortion, and local chemical bonding characteristics in materials. However, the intricate details of local composition fluctuation, metal-oxygen bond distortion and covalency are difficult to visualize experimentally, especially on the atomic scale. Here, we study the atomic structure-chemical bonding-property correlations in a series of perovskite-HEOs utilizing the recently developed four-dimensional scanning transmission electron microscopy techniques which enables to determine the structure, chemical bonding, electric field, and charge density on the atomic scale. The existence of compositional fluctuations along with significant composition-dependent distortion of metal-oxygen bonds is observed. Consequently, distinct variations of metal-oxygen bonding covalency are shown by the real-space charge-density distribution maps with sub-ångström resolution. The observed atomic features not only provide a realistic picture of the local physico-chemistry of chemically complex HEOs but can also be directly correlated to their distinctive magneto-electronic properties. 
    more » « less
  2. Entropy stabilized oxide of MgNiCoCuZnO5, also known as J14, is a material of active research interest due to a high degree of lattice distortion and tunability. Lattice distortion in J14 plays a crucial role in understanding the elastic constants and lattice thermal conductivity within the single-phase crystal. In this work, a neuroevolution machine learning potential (NEP) is developed for J14, and its accuracy has been compared to density functional theory calculations. The training errors for energy, force, and virial are 5.60 meV/atom, 97.90 meV/Å, and 45.67 meV/atom, respectively. Employing NEP potential, lattice distortion, and elastic constants is studied up to 900 K. In agreement with experimental findings, this study shows that the average lattice distortion of oxygen atoms is relatively higher than that of all transition metals in entropy-stabilized oxide. The observed distortion saturation in the J14 arises from the competing effects of minimum site distortion, which increases with increasing temperature due to enhanced thermal vibrations, and maximum site distortion, which decreases with increasing temperature. Furthermore, a series of molecular dynamics simulations up to 900 K are performed to study the stress–strain behavior. The elastic constants, bulk modulus, and ultimate tensile strength obtained from these simulations indicate a linear decrease in these properties with temperature, as J14 becomes softer owing to thermal effects. Finally, to gain some insight into thermal transport in these materials, with the so-developed NEP potential, and using non-equilibrium molecular dynamics simulations, we study the lattice thermal conductivity (κ) of the ternary compound MgNiO2 as a function of temperature. It is found that κ decreases from 4.25 W m−1 K−1 at room temperature to 3.5 W m−1 K−1 at 900 K. This suppression is attributed to the stronger scattering of low-frequency modes at higher temperatures. 
    more » « less
  3. Abstract Severe lattice distortion is a prominent feature of high-entropy alloys (HEAs) considered a reason for many of those alloys’ properties. Nevertheless, accurate characterizations of lattice distortion are still scarce to only cover a tiny fraction of HEA’s giant composition space due to the expensive experimental or computational costs. Here we present a physics-informed statistical model to efficiently produce high-throughput lattice distortion predictions for refractory non-dilute/high-entropy alloys (RHEAs) in a 10-element composition space. The model offers improved accuracy over conventional methods for fast estimates of lattice distortion by making predictions based on physical properties of interatomic bonding rather than atomic size mismatch of pure elements. The modeling of lattice distortion also implements a predictive model for yield strengths of RHEAs validated by various sets of experimental data. Combining our previous model on intrinsic ductility, a data mining design framework is demonstrated for efficient exploration of strong and ductile single-phase RHEAs. 
    more » « less
  4. Multi-principal-element alloys (MPEAs) based on 3d-transition metals show remarkable mechanical properties. The stacking fault energy (SFE) in face-centered cubic (fcc) alloys is a critical property that controls underlying deformation mechanisms and mechanical response. Here, we present an exhaustive density-functional theory study on refractory- and copper-reinforced Cantor-based systems to ascertain the effects of refractory metal chemistry on SFE. We find that even a small percent change in refractory metal composition significantly changes SFEs, which correlates favorably with features like electronegativity variance, size effect, and heat of fusion. For fcc MPEAs, we also detail the changes in mechanical properties, such as bulk, Young’s, and shear moduli, as well as yield strength. A Labusch-type solute-solution-strengthening model was used to evaluate the temperature-dependent yield strength, which, combined with SFE, provides a design guide for high-performance alloys. We also analyzed the electronic structures of two down-selected alloys to reveal the underlying origin of optimal SFE and strength range in refractory-reinforced fcc MPEAs. These new insights on tuning SFEs and modifying composition-structure-property correlation in refractory- and copper-reinforced MPEAs by chemical disorder, provide a chemical route to tune twinning- and transformation-induced plasticity behavior. 
    more » « less
  5. Abstract We revisit the meaning of stacking fault energy (SFE) and the assumptions of equilibrium dissociation of lattice dislocations in concentrated alloys. SFE is a unique value in pure metals. However, in alloys beyond the dilute limit, SFE has a distribution of values depending on the local atomic environment. Conventionally, the equilibrium distance between partial dislocations is determined by a balance between the repulsive elastic interaction between the partial dislocations and a unique value for SFE. This assumption is used to determine SFE from experimental measurements of dislocation splitting distances in metals and alloys, often contradicting computational predictions. We use atomistic simulations in a model NiCo alloy to study the dislocation dissociation process in a range of compositions with positive, zero, and negative average SFE and surprisingly observe a stable, finite splitting distance in all cases at low temperatures. We then compute the decorrelation stress and examine the balance of forces on the partial dislocations, considering the local effects on SFE, and observe that even the upper bound of SFE distribution alone cannot satisfy the force balance in some cases. Furthermore, we show that in concentrated solid solutions, the resisting force caused by interaction of dislocations with the local solute environment becomes a major force acting on partial dislocations. Here, we show that the presence of a high solute/dislocation interaction, which is not easy to measure and neglected in experimental measurements of SFE, renders the experimental values of SFE unreliable. 
    more » « less