skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Model for Flux Rope Formation and Disconnection in Pseudostreamer Coronal Mass Ejections
Abstract Coronal mass ejections (CMEs) from pseudostreamers represent a significant fraction of large-scale eruptions from the Sun. In some cases, these CMEs take a narrow jet-like form reminiscent of coronal jets; in others, they have a much broader fan-shaped morphology like CMEs from helmet streamers. We present results from a magnetohydrodynamic simulation of a broad pseudostreamer CME. The early evolution of the eruption is initiated through a combination of breakout interchange reconnection at the overlying null point and ideal instability of the flux rope that forms within the pseudostreamer. This stage is characterized by a rolling motion and deflection of the flux rope toward the breakout current layer. The stretching out of the strapping field forms a flare current sheet below the flux rope; reconnection onset there forms low-lying flare arcade loops and the two-ribbon flare footprint. Once the CME flux rope breaches the rising breakout current layer, interchange reconnection with the external open field disconnects one leg from the Sun. This induces a whip-like rotation of the flux rope, generating the unstructured fan shape characteristic of pseudostreamer CMEs. Interchange reconnection behind the CME releases torsional Alfvén waves and bursty dense outflows into the solar wind. Our results demonstrate that pseudostreamer CMEs follow the same overall magnetic evolution as coronal jets, although they present different morphologies of their ejecta. We conclude that pseudostreamer CMEs should be considered a class of eruptions that are distinct from helmet-streamer CMEs, in agreement with previous observational studies.  more » « less
Award ID(s):
2229336
PAR ID:
10553194
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
975
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 168
Size(s):
Article No. 168
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyzed Interface-Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations of a small coronal jet that occurred at the solar west limb on 29 August 2014. The jet source region, a small bright point, was located at an active-region periphery and contained a fan-spine topology with a mini-filament. Our analysis has identified key features and timings that motivated the following interpretation of this event. As the stressed core flux rises, a current sheet forms beneath it; the ensuing reconnection forms a flux rope above a flare arcade. When the rising filament-carrying flux rope reaches the stressed null, it triggers a jet via explosive interchange (breakout) reconnection. During the flux-rope interaction with the external magnetic field, we observed brightening above the filament and within the dome, along with a growing flare arcade. EUV images reveal quasi-periodic ejections throughout the jet duration with a dominant period of 4 minutes, similar to coronal jetlets and larger jets. We conclude that these observations are consistent with the magnetic breakout model for coronal jets. 
    more » « less
  2. Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the SBO-CME is interacting with the heliospheric magnetic field and plasma sheet structures draped about the CME flux rope. We estimate that 18 ± 11% of the CME’s azimuthal magnetic flux has been eroded through magnetic reconnection and that this erosion began after a heliospheric distance of ∼0.35 AU from the Sun was reached. This observational study has important implications for understanding the initiation of SBO-CMEs and their interaction with the heliospheric surroundings. 
    more » « less
  3. Abstract The magnetic topology of erupting regions on the Sun is a key factor in the energy buildup and release, and the subsequent evolution of flares and coronal mass ejections (CMEs). The presence/absence of null points and separatrices dictates whether and where current sheets form and magnetic reconnection occurs. Numerical simulations show that energy buildup and release via reconnection in the simplest configuration with a null, the embedded bipole, is a universal mechanism for solar eruptions. Here we demonstrate that a magnetic topology with nested bipoles and two nulls can account for more complex dynamics, such as failed eruptions and CME–jet interactions. We investigate the stalled eruption of a nested configuration on 2013 July 13 in NOAA Active Region 11791, in which a small bipole is embedded within a large transequatorial pseudo-streamer containing a null. In the studied event, the inner active region erupted, ejecting a small flux rope behind a shock accompanied by a flare; the flux rope then reconnected with pseudo-streamer flux and, rather than escaping intact, mainly distorted the pseudo-streamer null into a current sheet. EUV and coronagraph images revealed a weak shock and a faint collimated outflow from the pseudo-streamer. We analyzed Solar Dynamics Observatory and Solar TErrestrial RElations Observatory observations and compared the inferred magnetic evolution and dynamics with three-dimensional magnetohydrodynamics simulations of a simplified representation of this nested fan-spine system. The results suggest that the difference between breakout reconnection at the inner null and at the outer null naturally accounts for the observed weak jet and stalled ejection. We discuss the general implications of our results for failed eruptions. 
    more » « less
  4. Context. Coronal mass ejections (CMEs) on the Sun are the largest explosions in the Solar System that can drive powerful plasma shocks. The eruptions, shocks, and other processes associated to CMEs are efficient particle accelerators and the accelerated electrons in particular can produce radio bursts through the plasma emission mechanism. Aims. Coronal mass ejections and associated radio bursts have been well studied in cases where the CME originates close to the solar limb or within the frontside disc. Here, we study the radio emission associated with a CME eruption on the back side of the Sun on 22 July 2012. Methods. Using radio imaging from the Nançay Radioheliograph, spectroscopic data from the Nançay Decametric Array, and extreme-ultraviolet observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, we determine the nature of the observed radio emission as well as the location and propagation of the CME. Results. We show that the observed low-intensity radio emission corresponds to a type II radio burst or a short-duration type IV radio burst associated with a CME eruption due to breakout reconnection on the back side of the Sun, as suggested by the pre-eruptive magnetic field configuration. The radio emission consists of a large, extended structure, initially located ahead of the CME, that corresponds to various electron acceleration locations. Conclusions. The observations presented here are consistent with the breakout model of CME eruptions. The extended radio emission coincides with the location of the current sheet and quasi-separatrix boundary of the CME flux and the overlying helmet streamer and also with that of a large shock expected to form ahead of the CME in this configuration. 
    more » « less
  5. Abstract In order to bridge the gap between heliospheric and solar observations of coronal mass ejections (CMEs), one of the key steps is to improve the understanding of their corresponding magnetic structures like the magnetic flux ropes (MFRs). But it remains a challenge to confirm the existence of a coherent MFR before or upon the CME eruption on the Sun and to quantitatively characterize the CME-MFR due to the lack of direct magnetic field measurements in the corona. In this study, we investigate MFR structures originating from two active regions (ARs), AR 11719 and AR 12158, and estimate their magnetic properties quantitatively. We perform nonlinear force-free field extrapolations with preprocessed photospheric vector magnetograms. In addition, remote-sensing observations are employed to find indirect evidence of MFRs on the Sun and to analyze the time evolution of magnetic reconnection flux associated with the flare ribbons during the eruption. A coherent “preexisting” MFR structure prior to the flare eruption is identified quantitatively for one event from the combined analysis of the extrapolation and observation. Then the characteristics of MFRs for two events on the Sun before and during the eruption forming the CME-MFR, including the axial magnetic flux, field line twist, and reconnection flux, are estimated and compared with the corresponding in situ modeling results. We find that the magnetic reconnection associated with the accompanying flares for both events injects a significant amount of flux into the erupted CME-MFRs. 
    more » « less