Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Coronal pseudostreamer flux systems have a specific magnetic configuration that influences the morphology and evolution of coronal mass ejections (CMEs) from these regions. Here we continue the analysis of the Wyper et al. magnetohydrodynamic simulation of a CME eruption from an idealized pseudostreamer configuration through the construction of synthetic remote-sensing and in situ observational signatures. We examine the pre-eruption and eruption signatures in extreme ultraviolet and white light from the low corona through the extended solar atmosphere. We calculate synthetic observations corresponding to several Parker Solar Probe–like trajectories at ∼10R⊙to highlight the fine-scale structure of the CME eruption in synthetic WISPR imagery and the differences between the in situ plasma and field signatures of flank and central CME-encounter trajectories. Finally, we conclude with a discussion of several aspects of our simulation results in the context of interpretation and analysis of current and future Parker Solar Probe data.more » « lessFree, publicly-accessible full text available March 19, 2026
-
Abstract Plasmoids (or magnetic islands) are believed to play an important role in the onset of fast magnetic reconnection and particle acceleration during solar flares and eruptions. Direct imaging of flare current sheets and the formation/ejection of multiple plasmoids in extreme-ultraviolet images, along with simultaneous X-ray and radio observations, offers significant insights into the mechanisms driving particle acceleration in solar flares. Here, we present direct imaging of the formation and ejection of multiple plasmoids in flare plasma/current sheets and the associated quasiperiodic pulsations (QPPs) observed at X-ray and radio wavelengths, using observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, RHESSI, and the Fermi Gamma-ray Burst Monitor. These plasmoids propagate bidirectionally upward and downward along the flare current sheet beneath the erupting flux rope during two successive flares associated with confined/failed eruptions. The flux rope exhibits evidence of helical kink instability, with the formation and ejection of multiple plasmoids in the flare current sheet, as predicted in an MHD simulation of a kink-unstable flux rope. RHESSI X-ray images show double coronal sources (“looptop” and higher coronal sources) located at both ends of the flare current/plasma sheet. Moreover, we detect an additional transient faint X-ray source (6–12 keV) located between the double coronal sources, which is cospatial with multiple plasmoids in the flare current sheet. X-ray (soft and hard) and radio (decimetric) observations unveil QPPs (periods ≈ 10 s and 100 s) associated with the ejection and coalescence of plasmoids. These observations suggest that energetic electrons are accelerated during the ejection and coalescence of multiple plasmoids in the flare current sheet.more » « lessFree, publicly-accessible full text available February 11, 2026
-
Abstract Mutual conversion of various kinds of magnetohydrodynamic (MHD) waves can have profound impacts on wave propagation, energy transfer, and heating of the solar chromosphere and corona. Mode conversion occurs when an MHD wave travels through a region where the Alfvén and sound speeds are equal (e.g., a 3D magnetic null point). Here we report the direct extreme ultraviolet (EUV) imaging of mode conversion from a fast-mode to a slow-mode MHD wave near a 3D null point using Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. An incident fast EUV wavefront associated with an adjacent eruptive flare propagates laterally through a neighboring pseudostreamer. Shortly after the passage of the fast EUV wave through the null point, a slow-mode wave appears near the null that propagates upward along the open structures and simultaneously downward along the separatrix encompassing the fan loops of the pseudostreamer base. These observations suggest the existence of mode conversion near 3D nulls in the solar corona, as predicted by theory and MHD simulations. Moreover, we observe decaying transverse oscillations in both the open and closed structures of the pseudostreamer, along with quasiperiodic type III radio bursts indicative of repetitive episodes of electron acceleration.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Coronal mass ejections (CMEs) from pseudostreamers represent a significant fraction of large-scale eruptions from the Sun. In some cases, these CMEs take a narrow jet-like form reminiscent of coronal jets; in others, they have a much broader fan-shaped morphology like CMEs from helmet streamers. We present results from a magnetohydrodynamic simulation of a broad pseudostreamer CME. The early evolution of the eruption is initiated through a combination of breakout interchange reconnection at the overlying null point and ideal instability of the flux rope that forms within the pseudostreamer. This stage is characterized by a rolling motion and deflection of the flux rope toward the breakout current layer. The stretching out of the strapping field forms a flare current sheet below the flux rope; reconnection onset there forms low-lying flare arcade loops and the two-ribbon flare footprint. Once the CME flux rope breaches the rising breakout current layer, interchange reconnection with the external open field disconnects one leg from the Sun. This induces a whip-like rotation of the flux rope, generating the unstructured fan shape characteristic of pseudostreamer CMEs. Interchange reconnection behind the CME releases torsional Alfvén waves and bursty dense outflows into the solar wind. Our results demonstrate that pseudostreamer CMEs follow the same overall magnetic evolution as coronal jets, although they present different morphologies of their ejecta. We conclude that pseudostreamer CMEs should be considered a class of eruptions that are distinct from helmet-streamer CMEs, in agreement with previous observational studies.more » « less
-
Abstract Magnetic reconnection is widely believed to be the fundamental process in the solar atmosphere that underlies magnetic energy release and particle acceleration. This process is responsible for the onset of solar flares, coronal mass ejections, and other explosive events (e.g., jets). Here, we report direct imaging of a prolonged plasma/current sheet along with quasiperiodic magnetic reconnection in the solar corona using ultra-high-resolution observations from the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory and the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The current sheet appeared near a null point in the fan–spine topology and persisted over an extended period (≈20 hr). The length and apparent width of the current sheet were about 6″ and 2″, respectively, and the plasma temperature was ≈10–20 MK. We observed quasiperiodic plasma inflows and outflows (bidirectional jets with plasmoids) at the reconnection site/current sheet. Furthermore, quasiperiodic reconnection at the long-lasting current sheet produced recurrent eruptions (small flares and jets) and contributed significantly to the recurrent impulsive heating of the active region. Direct imaging of a plasma/current sheet and recurrent null-point reconnection for such an extended period has not been reported previously. These unprecedented observations provide compelling evidence that supports the universal model for solar eruptions (i.e., the breakout model) and have implications for impulsive heating of active regions by recurrent reconnection near null points. The prolonged and sustained reconnection for about 20 hr at the breakout current sheet provides new insights into the dynamics and energy release processes in the solar corona.more » « lessFree, publicly-accessible full text available September 20, 2025
-
Abstract A series of solar energetic electron (SEE) events was observed from 2022 November 9 to November 15 by Solar Orbiter, STEREO-A, and near-Earth spacecraft. At least 32 SEE intensity enhancements at energies >10 keV were clearly distinguishable in Solar Orbiter particle data, with 13 of them occurring on November 11. Several of these events were accompanied by ≲10 MeV proton and ≲2 MeV nucleon−1heavy-ion intensity enhancements. By combining remote-sensing and in situ data from the three viewpoints (Solar Orbiter and STEREO-A were ∼20° and ∼15° east of Earth, respectively), we determine that the origin of this rapid succession of events was a series of brightenings and jetlike eruptions detected in extreme ultraviolet (EUV) observations from the vicinity of two active regions. We find a close association between these EUV phenomena, the occurrence of hard X-ray flares, type III radio bursts, and the release of SEEs. For the most intense events, usually associated with extended EUV jets, the distance between the site of these solar eruptions and the estimated magnetic connectivity regions of each spacecraft with the Sun did not prevent the arrival of electrons at the three locations. The capability of jets to drive coronal fronts does not necessarily imply the observation of an SEE event. Two peculiar SEE events on November 9 and 14, observed only at electron energies ≲50 keV but rich in ≲1 MeV nucleon−1heavy ions, originated from slow-rising confined EUV emissions, for which the process resulting in energetic particle release to interplanetary space is unclear.more » « lessFree, publicly-accessible full text available October 25, 2025
-
Abstract The magnetic topology of erupting regions on the Sun is a key factor in the energy buildup and release, and the subsequent evolution of flares and coronal mass ejections (CMEs). The presence/absence of null points and separatrices dictates whether and where current sheets form and magnetic reconnection occurs. Numerical simulations show that energy buildup and release via reconnection in the simplest configuration with a null, the embedded bipole, is a universal mechanism for solar eruptions. Here we demonstrate that a magnetic topology with nested bipoles and two nulls can account for more complex dynamics, such as failed eruptions and CME–jet interactions. We investigate the stalled eruption of a nested configuration on 2013 July 13 in NOAA Active Region 11791, in which a small bipole is embedded within a large transequatorial pseudo-streamer containing a null. In the studied event, the inner active region erupted, ejecting a small flux rope behind a shock accompanied by a flare; the flux rope then reconnected with pseudo-streamer flux and, rather than escaping intact, mainly distorted the pseudo-streamer null into a current sheet. EUV and coronagraph images revealed a weak shock and a faint collimated outflow from the pseudo-streamer. We analyzed Solar Dynamics Observatory and Solar TErrestrial RElations Observatory observations and compared the inferred magnetic evolution and dynamics with three-dimensional magnetohydrodynamics simulations of a simplified representation of this nested fan-spine system. The results suggest that the difference between breakout reconnection at the inner null and at the outer null naturally accounts for the observed weak jet and stalled ejection. We discuss the general implications of our results for failed eruptions.more » « less
-
We analyzed Interface-Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations of a small coronal jet that occurred at the solar west limb on 29 August 2014. The jet source region, a small bright point, was located at an active-region periphery and contained a fan-spine topology with a mini-filament. Our analysis has identified key features and timings that motivated the following interpretation of this event. As the stressed core flux rises, a current sheet forms beneath it; the ensuing reconnection forms a flux rope above a flare arcade. When the rising filament-carrying flux rope reaches the stressed null, it triggers a jet via explosive interchange (breakout) reconnection. During the flux-rope interaction with the external magnetic field, we observed brightening above the filament and within the dome, along with a growing flare arcade. EUV images reveal quasi-periodic ejections throughout the jet duration with a dominant period of 4 minutes, similar to coronal jetlets and larger jets. We conclude that these observations are consistent with the magnetic breakout model for coronal jets.more » « less
-
We present results of a quantitative analysis of structured plasma outflows above a polar coronal hole observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) spacecraft. In a 6 hr interval of continuous high-cadence SDO/AIA images, we identified more than 2300 episodes of small-scale plasma flows in the polar corona. The mean upward flow speed measured by the surfing transform technique is estimated to be 122 ± 34 km s−1, which is comparable to the local sound speed. The typical recurrence period of the flow episodes is 10–30 minutes, and the mean duration and transverse size of each episode are about 3–5 minutes and 3–4 Mm, respectively. The largest identifiable episodes last for tens of minutes and reach widths up to 40 Mm. For the first time, we demonstrate that the polar coronal-hole outflows obey a family of power-law probability distributions characteristic of impulsive interchange magnetic reconnection. Turbulent photospheric driving may play a crucial role in releasing magnetically confined plasma onto open field. The estimated occurrence rate of the detected self-similar coronal outflows is sufficient for them to make a dominant contribution to the fast-wind mass and energy fluxes and to account for the wind’s small-scale structure.more » « less
-
This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere.more » « less