This content will become publicly available on October 3, 2025
High metabolic rates drive tiny genomes in plants (and birds): a commentary on ‘The smallest angiosperm genomes may be the price for effective traps of bladderworts’
- Award ID(s):
- 1929296
- PAR ID:
- 10553419
- Publisher / Repository:
- Annals of Botany
- Date Published:
- Journal Name:
- Annals of Botany
- ISSN:
- 0305-7364
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.more » « less