skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Development of a machine learning finite-range nonlocal density functional

Kohn–Sham density functional theory has been the most popular method in electronic structure calculations. To fulfill the increasing accuracy requirements, new approximate functionals are needed to address key issues in existing approximations. It is well known that nonlocal components are crucial. Current nonlocal functionals mostly require orbital dependence such as in Hartree–Fock exchange and many-body perturbation correlation energy, which, however, leads to higher computational costs. Deviating from this pathway, we describe functional nonlocality in a new approach. By partitioning the total density to atom-centered local densities, a many-body expansion is proposed. This many-body expansion can be truncated at one-body contributions, if a base functional is used and an energy correction is approximated. The contribution from each atom-centered local density is a single finite-range nonlocal functional that is universal for all atoms. We then use machine learning to develop this universal atom-centered functional. Parameters in this functional are determined by fitting to data that are produced by high-level theories. Extensive tests on several different test sets, which include reaction energies, reaction barrier heights, and non-covalent interaction energies, show that the new functional, with only the density as the basic variable, can produce results comparable to the best-performing double-hybrid functionals, (for example, for the thermochemistry test set selected from the GMTKN55 database, BLYP based machine learning functional gives a weighted total mean absolute deviations of 3.33 kcal/mol, while DSD-BLYP-D3(BJ) gives 3.28 kcal/mol) with a lower computational cost. This opens a new pathway to nonlocal functional development and applications.

 
more » « less
Award ID(s):
2154831
PAR ID:
10553441
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
1
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry, but accuracies for many molecules are limited to 2-3 kcal ⋅ mol−1with presently-available functionals. Ab initio methods, such as coupled-cluster, routinely produce much higher accuracy, but computational costs limit their application to small molecules. In this paper, we leverage machine learning to calculate coupled-cluster energies from DFT densities, reaching quantum chemical accuracy (errors below 1 kcal ⋅ mol−1) on test data. Moreover, density-basedΔ-learning (learning only the correction to a standard DFT calculation, termedΔ-DFT ) significantly reduces the amount of training data required, particularly when molecular symmetries are included. The robustness ofΔ-DFT  is highlighted by correcting “on the fly” DFT-based molecular dynamics (MD) simulations of resorcinol (C6H4(OH)2) to obtain MD trajectories with coupled-cluster accuracy. We conclude, therefore, thatΔ-DFT  facilitates running gas-phase MD simulations with quantum chemical accuracy, even for strained geometries and conformer changes where standard DFT fails.

     
    more » « less
  2. Abstract

    The Hohenberg-Kohn theorem of density-functional theory establishes the existence of a bijection between the ground-state electron density and the external potential of a many-body system. This guarantees a one-to-one map from the electron density to all observables of interest including electronic excited-state energies. Time-Dependent Density-Functional Theory (TDDFT) provides one framework to resolve this map; however, the approximations inherent in practical TDDFT calculations, together with their computational expense, motivate finding a cheaper, more direct map for electronic excitations. Here, we show that determining density and energy functionals via machine learning allows the equations of TDDFT to be bypassed. The framework we introduce is used to perform the first excited-state molecular dynamics simulations with a machine-learned functional on malonaldehyde and correctly capture the kinetics of its excited-state intramolecular proton transfer, allowing insight into how mechanical constraints can be used to control the proton transfer reaction in this molecule. This development opens the door to using machine-learned functionals for highly efficient excited-state dynamics simulations.

     
    more » « less
  3. Gradient-domain machine learning (GDML) force fields have shown excellent accuracy, data efficiency, and applicability for molecules with hundreds of atoms, but the employed global descriptor limits transferability to ensembles of molecules. Many-body expansions (MBEs) should provide a rigorous procedure for size-transferable GDML by training models on fundamental n-body interactions. We developed many-body GDML (mbGDML) force fields for water, acetonitrile, and methanol by training 1-, 2-, and 3-body models on only 1000 MP2/def2-TZVP calculations each. Our mbGDML force field includes intramolecular flexibility and intermolecular interactions, providing that the reference data adequately describe these effects. Energy and force predictions of clusters containing up to 20 molecules are within 0.38 kcal/mol per monomer and 0.06 kcal/(mol Å) per atom of reference supersystem calculations. This deviation partially arises from the restriction of the mbGDML model to 3-body interactions. GAP and SchNet in this MBE framework achieved similar accuracies but occasionally had abnormally high errors up to 17 kcal/mol. NequIP trained on total energies and forces of trimers experienced much larger energy errors (at least 15 kcal/mol) as the number of monomers increased—demonstrating the effectiveness of size transferability with MBEs. Given these approximations, our automated mbGDML training schemes also resulted in fair agreement with reference radial distribution functions (RDFs) of bulk solvents. These results highlight mbGDML as valuable for modeling explicitly solvated systems with quantum-mechanical accuracy. 
    more » « less
  4. Dimer interaction energies have been well studied in computational chemistry, but they can offer an incomplete understanding of molecular binding depending on the system. In the current study, we present a dataset of focal-point coupled-cluster interaction and deformation energies (summing to binding energies, De) of 28 organic molecular dimers. We use these highly accurate energies to evaluate ten density functional approximations for their accuracy. The best performing method (with a double-ζ basis set), B97M-D3BJ, is then used to calculate the binding energies of 104 organic dimers, and we analyze the influence of the nature and strength of interaction on deformation energies. Deformation energies can be as large as 50% of the dimer interaction energy, especially when hydrogen bonding is present. In most cases, two or more hydrogen bonds present in a dimer correspond to an interaction energy of −10 to −25 kcal mol−1, allowing a deformation energy above 1 kcal mol−1 (and up to 9.5 kcal mol−1). A lack of hydrogen bonding usually restricts the deformation energy to below 1 kcal mol−1 due to the weaker interaction energy. 
    more » « less
  5. Second-order Møller–Plesset perturbation theory (MP2) provides a valuable alternative to density functional theory for modeling problems in organic and biological chemistry. However, MP2 suffers from known limitations in the description of van der Waals (London) dispersion interactions and reaction thermochemistry. Here, a spin-component-scaled, dispersion-corrected MP2 model (SCS-MP2D) is proposed that addresses these weaknesses. The dispersion correction, which is based on Grimme's D3 formalism, replaces the uncoupled Hartree–Fock dispersion inherent in MP2 with a more robust coupled Kohn–Sham treatment. The spin-component scaling of the residual MP2 correlation energy then reduces the remaining errors in the model. This two-part correction strategy solves the problem found in earlier spin-component-scaled MP2 models where completely different spin-scaling parameters were needed for describing reaction energies versus intermolecular interactions. Results on 18 benchmark data sets and two challenging potential energy curves demonstrate that SCS-MP2D considerably improves upon the accuracy of MP2 for intermolecular interactions, conformational energies, and reaction energies. Its accuracy and computational cost are competitive with state-of-the-art density functionals such as DSD-BLYP-D3(BJ), revDSD-PBEP86-D3(BJ), ωB97X-V, and ωB97M-V for systems with ∼100 atoms. 
    more » « less