This manuscript presents an ultrafast-laser-absorption-spectroscopy (ULAS) diagnostic capable of providing calibration-free, single-shot measurements of temperature and CO at 5 kHz in combustion gases at low and high pressures. Additionally, this diagnostic was extended to provide 1D, single-shot measurements of temperature and CO in a propellant flame. A detailed description of the spectral-fitting routine, data-processing procedures, and determination of the instrument response function are also presented. The accuracy of the diagnostic was validated at 1000 K and pressures up to 40 bar in a heated-gas cell before being applied to characterize the spatiotemporal evolution of temperature and CO in AP-HTPB and AP-HTPB-aluminum propellant flames at pressures between 1 and 40 bar. The results presented here demonstrate that ULAS in the mid-IR can provide high-fidelity, calibration-free measurements of gas properties with sub-nanosecond time resolution in harsh, high-pressure combustion environments representative of rocket motors.
This content will become publicly available on May 1, 2025
- Award ID(s):
- 1954834
- PAR ID:
- 10553563
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Aerospace Science and Technology
- Volume:
- 148
- Issue:
- C
- ISSN:
- 1270-9638
- Page Range / eLocation ID:
- 109107
- Subject(s) / Keyword(s):
- t
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper develops a control co-design (CCD) framework to simultaneously optimize the spacecraft’s trajectory and onboard system (rocket engine) and quantify its benefit. An open-loop optimal control problem (two-finite burn Mars missions) is used as the benchmark, and the engine design considers the combustion equilibrium and nozzle geometry. The objective function is the fuel burn. The design variables are the trajectory control parameters (such as burn times, burn directions, and time of flight), initial fuel mass, and engine design parameters (such as throat area, mixture ratio, and chamber pressure). The constraints include the final velocities and positions of spacecraft. Single-point optimizations are conducted for three departure dates in May, July, and September 2020. A multipoint optimization is also performed to balance the engine performance for these dates with 49 design variables and 20 constraints. It is found that the CCD optimizations exhibit 22–28% more fuel burn reduction than the trajectory-only optimization with fixed engine parameters and 16–20% more fuel burn reduction than the decoupled trajectory-engine optimization. The proposed CCD optimization framework can be extended to more spacecraft trajectory control parameters and onboard systems and has the potential to design more efficient spacecraft missions.more » « less
-
null (Ed.)Solid fuel combustion experiments aboard the ISS examine the effects of confinement on a concurrent, purely-forced-flow flame spread in microgravity environment. The results for a thin, cotton-fiberglass-blended textile fabric fuel are presented. Flat baffles of differing materials are used to alter the radiative boundary conditions with transparent polycarbonate, black anodized aluminum (reflectance ~ 0), and highly polished aluminum (reflectance ~ 1). The baffles are parallel to the fuel sheet and placed symmetrically on each side. The inter-baffle distance is varied to change the boundary conditions for the flow. In all tests, samples are ignited at the upstream leading edge and allowed to burn to completion. Results show that the flame reaches a steady length and spread rate at low flow speeds (< 15 cm/s) for all tested inter-baffle distances. As the distance decreases, the flame length and spread rate first increase then decrease showing an optimal inter-baffle distance. For all baffle types, the flame either fails to ignite or extinguishes before reaching the end of the sample when the inter-baffle distance is too small (~ 1 cm). This is attributed to the reduction of oxygen supply to the flame zone and heat loss to the baffles. The results also show at the same inter-baffle distance, flame length and spread rate are highest for polished aluminum baffles, and lowest for transparent polycarbonate baffles. The differences are most prominent at intermediate tested baffle distances. While the radiative heat feedback from the baffles is expected to increase when the baffle distance decreases, the combustion is limited by the reduced oxygen supply. Near this limit, flame lengths and spread rates are similar for all baffle types.more » « less
-
Abstract The influence of additives on the decomposition and combustion characteristics of electrically controlled solid propellants was investigated through small scale experiments. Carbon black and aluminum additives were explored in a polyethylene oxide, lithium perchlorate propellant. Additives were used to improve the voltage response and their impact on ignition and combustion was characterized. The data showed that conductive additives can mitigate the loss of solid phase conductivity through solvent evaporation and that ignition delay decreases with higher voltage and solid phase conductivity. Steady‐state combustion experiments showed that electrical decomposition of the propellants proceeded more rapidly than a purely thermal stimulus illustrating the importance of electrochemistry in ECSP combustion. The combined effects of pressure and voltage on combustion rates were summarized in Saint‐Robert's burn relations. The regression rates increased with both applied voltage and pressure. The pressure deflagration limit of propellants with the carbon black additive was significantly reduced compared to a neat PEO/LP propellant, whereas the addition of 10 % aluminum did not affect the pressure deflagration limit.
-
We perform spatially resolved measurements of light scattering of soot in atmospheric pressure counterflow diffusion flames to complement previously reported data on soot pyrometry, temperature and gaseous species up to three-ring polycyclic aromatic hydrocarbons (PAHs). We compare two flames: a baseline ethylene flame and a toluene-seeded flame in which an aliquot of ethylene in the feed stream is replaced with 3500 ppm of pre-vaporized toluene. The goal is twofold: directly adding an aromatic fuel to bypass the formation of the first aromatic ring, widely regarded as the main bottleneck to soot formation from aliphatic fuels, and assessing the impact of a common component of surrogates of transportation fuels on soot formation. The composition of the fuel and oxidizer streams are adjusted to ensure invariance of the temperature-time history, thereby decoupling the chemical effects of the fuel substitution from other factors. The doping approach enables the comparison of very similar flames with respect to combustion products, radicals and critical precursors to aromatic formation (C2–C5 species), in addition to the temperature-time history. Doping with toluene boosts the aromatic content and soot volume fraction relative to the baseline ethylene flame, but, surprisingly, the soot number density and nucleation rate are affected modestly. As a result, the observed difference in volume fraction in the toluene-doped flame is reflective of larger initial particles at the onset of soot nucleation. The nucleation rate when soot first appears near the flame is of the same order as the dimerization rate of single-ring aromatics, in contrast with the expectation that the dimerization of larger PAHs initiates the process. Even though in and of itself nucleation contributes modestly to the overall soot loading, nucleation conditions the overall soot loading by affecting the size of the initial particle, which ultimately affects subsequent growth.more » « less