Poly(acrylamide- co -acrylic acid) (P(AAm- co -AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm- co -AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0–12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength ( I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient ( µ ), which decreased with increasing AA concentration. P(AAm- co -AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity ( µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) ( µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm- co -AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface. 
                        more » 
                        « less   
                    This content will become publicly available on November 4, 2025
                            
                            Hydronium‐Crosslinked Inorganic Hydrogel Comprised of 1D Lepidocrocite Titanate Nanofilaments
                        
                    
    
            Abstract When a few drops of acid (hydrochloric, acrylic, propionic, acetic, or formic) are added to a colloid comprised of 1D lepidocrocite titanate nanofilaments (1DLs)–2 × 2 TiO6octahedra in cross‐section–a hydrogel forms, in many cases, within seconds. The 1DL synthesis process requires the reaction between titanium diboride with tetramethylammonium (TMA+), hydroxide. Using quantitative nuclear magnetic resonance (qNMR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), the mass percent of TMA+after synthesis is determined to be ≈ 13.1 ± 0.1%. The TMA+is completely removed from the gels after 2 water soak cycles, resulting in the first completely inorganic, TiO2‐based hydrogels. Ion exchanging the TMA+with hydronium results in gels with relatively strong hydrogen bonds. The hydrogels' compression strengths increased linearly with 1DL colloid concentration. At a 1DL concentration of 45 g L−1, the compressive strength, at 80% deformation when acrylic acid is used, is ≈325 kPa. The strengths are ≈ 50% greater after the TMA+is removed. The removal of all residual organic components in the hydrogels, including TMA+, is confirmed by qNMR, Fourier‐transformed infrared spectroscopy (FTIR), and TGA/DSC. The 1DL phase is retained after gelation, TMA+removal, and 80% compression. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2211319
- PAR ID:
- 10553662
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 36
- Issue:
- 50
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Nanostructured titania, TiO2, holds significant importance in various scientific fields and technologies for their distinctive properties and multipurpose characteristics. In this article, the facile, economical, and scalable synthesis of 1D lepidocrocite, 1DL, titania nanostructures derived from a water‐soluble Ti precursor, titanium oxysulfate (with oxidation of Ti+4) at temperature <100 °C under atmospheric pressure is discussed. Titanium oxysulfate with tetramethyl ammonium hydroxide, TMAH, is simply reacted to yield individual lepidocrocite titania‐based chain‐forming nanofilaments, NFs, 6 × 6 Å2in minimal cross‐section and aspect ratios of ≈20 1DLs. If only ethanol is used for washing, the 1DL self‐assemble into ≈10 µm, porous mesostructured particles, PMPs. If water is used, quasi‐2D sheets form instead. Characterization of the resulting powders showed them to be quite similar to those derived from TiB2, and other water‐insoluble Ti precursors. The 1DL bandgap energies are ≈4 eV, due to quantum confinement. They adsorbed rhodamine 6G. The latter also sensitized the 1DLs and allowed for dye degradation using only visible light. Used as electrodes in supercapacitors, the 1DLs can be cycled over 1.6 V and result in high power densities (300 W kg−1). Stronger birefringence started to appear in samples with concentrations >15 gL−1indicating the formation of a liquid crystal phase. This new synthesis protocol enables the cheaper scalable production of 1DLs with significant implications across various fields.more » « less
- 
            Abstract Hydrogels containing thermosensitive polymers such as poly(N‐isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit low stiffness, tensile strength, and mechanical toughness, limiting their applicability. Through copolymerization of P(NIPAm) with poly(Acrylic acid) (P(AAc)) and introduction of ferric ions (Fe3+) that coordinate with functional groups along the P(AAc) chains, here a thermoresponsive hydrogel with enhanced mechanical extensibility, strength, and toughness is introduced. Using both experimentation and constitutive modeling, it is found that increasing the ratio of m(AAc):m(NIPAm) in the prepolymer decreases strength and toughness but improves extensibility. In contrast, increasing Fe3+concentration generally improves strength and toughness with little decrease in extensibility. Due to reversible coordination of the Fe3+bonds, these gels display excellent recovery of mechanical strength during cyclic loading and self‐healing ability. While thermosensitive contraction imbued by the underlying P(NIPAm) decreases slightly with increased Fe3+concentration, the temperature transition range is widened and shifted upward toward that of human body temperature (between 30 and 40 °C), perhaps rendering these gels suitable as in vivo biosensors. Finally, these gels display excellent adsorptive properties with a variety of materials, rendering them possible candidates in adhesive applications.more » « less
- 
            Poly(acrylic acid) (PAA) gels synthesized via free-radical polymerization of acrylic acid, N , N ′-methylenebisacrylamide and high molarities of salts in water exhibit properties markedly different from PAA gels synthesized without salt, even when the latter are incubated in high-molarity salt solutions after gelation. Particularly noteworthy is unusual mechanical behaviour that includes substantially increased elongation, increased modulus, and rapid recovery after strain. The greatest enhancement in viscoelastic behaviour is evident in 2 M LiCl and ZnCl 2 samples, with LiCl samples having a modulus of 39 kPa and reaching an extension ratio of 10 and a fracture stress of 135 kPa, and ZnCl 2 samples having a modulus of 43 kPa and reaching an extension ratio of 8.5 and a fracture stress of 175 kPa. This enhanced elasticity is thought to be brought about by a combination of coiled but only weakly-entangled PAA chains with phase-separated regions of salt acting as a plasticizer and modulating intermolecular interactions among AA units.more » « less
- 
            Abstract Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid‐state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free‐form structures from micron (∼70 µm) to centimeter scales. Firstly, sol‐gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home‐built micro‐continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µmpixel−1at a speed of 10 µm s−1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
