skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles
Abstract Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide, protecting the beetle’s eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from seven different host species within Lagriinae from five countries, to unravel the evolutionary history of this symbiotic relationship. In each host, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster. However, we did not find evidence for host-symbiont co-diversification, or for monophyly of the lagriamide-producing symbionts. Instead, our analyses support a single ancestral acquisition of the gene cluster followed by at least four independent symbiont acquisitions and subsequent genome erosion in each lineage. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide gene cluster. Our results, therefore, reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by a high degree of specificity, and highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis.  more » « less
Award ID(s):
1845890
PAR ID:
10553684
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
ISSN:
1751-7362
Subject(s) / Keyword(s):
lagriamide Burkholderia symbiosis symbiont replacement biosynthetic gene cluster metagenomics Lagriinae chemical defence secondary metabolism
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1–5 Gbp) and idiosyncratic genome features. Results Here, we present de novo genome assemblies of seven members of the genus Symbiodinium , of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species. Conclusions Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history. 
    more » « less
  2. null (Ed.)
    Background: Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1–5 Gbp) and idiosyncratic genome features. Results: Here, we present de novo genome assemblies of seven members of the genus Symbiodinium, of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species. Conclusions: Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history. 
    more » « less
  3. Abstract Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter and nutritional co-obligate symbiont. Here we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a co-infection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggest that metabolic complementarity is not the basis for co-infection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event. 
    more » « less
  4. Abstract Background Marine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snail Alviniconcha hessleri from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. Results Our phylogenomic analyses show that the free-living and host-associated symbionts of A. hessleri from both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. Conclusion Together, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition. 
    more » « less
  5. Abstract Leafhoppers comprise over 20,000 plant‐sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts,SulciaandNasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal‐level assembly of the aster leafhopper's genome (ALF;Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers,Nephotettix cincticeps,Homalodisca vitripennis, andEmpoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont,Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with bothSulciaand its ancient partner,Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support ofSulciaandNasuiaare only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non‐symbiotic functions are conserved across all species. The high‐quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets. 
    more » « less