The Kapitza-Dirac effect is the diffraction of quantum particles by a standing wave of light. We here report an analogous phenomenon in pilot-wave hydrodynamics, wherein droplets walking across the surface of a vibrating liquid bath are deflected by a standing Faraday wave. We show that, in certain parameter regimes, the statistical distribution of the droplet deflection angles reveals a diffraction pattern reminiscent of that observed in the Kapitza-Dirac effect. Through experiments and simulations, we show that the diffraction pattern results from the complex interactions of the droplets with the standing wave. Our study highlights nonresonant effects associated with the detuning of the droplet bouncing and the bath vibration, which are shown to lead to drop speed variations and droplet sorting according to the droplet's phase of impact. We discuss the similarities and differences between our hydrodynamic system and the discrete and continuum interpretations of the Kapitza-Dirac effect, and introduce the notion of ponderomotive effects in pilot-wave hydrodynamics. Published by the American Physical Society2025
more »
« less
Anderson Localization of Walking Droplets
Understanding the ability of particles to maneuver through disordered environments is a central problem in innumerable settings, from active matter and biology to electronics. Macroscopic particles ultimately exhibit diffusive motion when their energy exceeds the characteristic potential barrier of the random landscape. In stark contrast, wave-particle duality causes electrons in disordered media to come to rest even when the potential is weak—a remarkable phenomenon known as Anderson localization. Here, we present a hydrodynamic active system with wave-particle features, a millimetric droplet self-guided by its own wave field over a submerged random topography, whose dynamics exhibits localized statistics analogous to those of electronic systems. Consideration of an ensemble of particle trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography. We rationalize mechanistically the emergent statistics by virtue of the wave-mediated resonant coupling between the droplet and topography, which produces an attractive wave potential about the localization region. This hydrodynamic analog, which demonstrates how a classical particle may localize like a wave, suggests new directions for future research in various areas, including active matter, wave localization, many-body localization, and topological matter. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2144180
- PAR ID:
- 10589486
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review X
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2160-3308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
[This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] We discuss how research on student difficulties was used as a guide to develop, validate, and evaluate a Quantum Interactive Learning Tutorial (QuILT) to help students learn how to determine the completely symmetric bosonic or completely antisymmetric fermionic wave function and be able to compare and contrast them from the case when the particles can be treated as distinguishable. We discuss how explicit scaffolding is designed via guided teaching-learning sequences for two- or three-particle bosonic and fermionic systems to help students develop intuition about how to construct completely symmetric and antisymmetric wave function, both when spin part of the wave function is ignored and when both spatial and spin degrees of freedom are included. Published by the American Physical Society2025more » « less
-
Sunlike stars can transmute into comparable mass black holes by steadily accumulating heavy nonannihilating dark matter particles over the course of their lives. If such stars form in binary systems, they could give rise to quasi-monochromatic, persistent gravitational waves, commonly known as continuous gravitational waves, as they inspiral toward one another. We demonstrate that next-generation space-based detectors, e.g., Laser Interferometer Space Antenna (LISA) and Big Bang Observer (BBO), can provide novel constraints on dark matter parameters (dark matter mass and its interaction cross-section with the nucleons) by probing gravitational waves from transmuted sunlike stars that are in close binaries. Our projected constraints depend on several astrophysical uncertainties and nevertheless are competitive with the existing constraints obtained from cosmological measurements as well as terrestrial direct searches, demonstrating a notable science case for these space-based gravitational wave detectors as probes of particle dark matter. Published by the American Physical Society2024more » « less
-
Superclimbing dynamics is the signature feature of transverse quantum fluids describing wide superfluid one-dimensional interfaces and/or edges with negligible Peierls barrier. Using Lagrangian formalism, we show how the essence of the superclimb phenomenon—dynamic conjugation of the fields of the superfluid phase and geometric shape—clearly manifests itself via characteristic modes of autonomous motion of the insulating domain (“droplet”) with superclimbing edges. In the translation invariant case and in the absence of supercurrent along the edge, the droplet demonstrates ballistic motion with the velocity-dependent shape and zero bulk currents. In an isotropic trapping potential, the droplet features a doubly degenerate sloshing mode. The period of the ground-state evolution of the superfluid phase (dictating the frequency of the AC Josephson effect) is sensitive to the geometry of the droplet. The supercurrent along the edge dramatically changes the droplet dynamics: The motion acquires features resembling that of a two-dimensional charged particle interacting with a perpendicular magnetic field. In a linear external potential (uniform force field), the state with a supercurrent demonstrates a spectacular gyroscopic effect—uniform motion in the perpendicular to the force direction. Published by the American Physical Society2024more » « less
-
Acoustic levitation in air provides a containerless, gravity-free platform for investigating driven many-particle systems with nonconservative interactions and underdamped dynamics. In prior work the interactions among levitated particles were limited to attractive forces from scattered sound and repulsion from hydrodynamic microstreaming. We report on experiments in which contact cohesion provides a third type of interaction. When particle size and separation are both much smaller than the sound wavelength, this interplay of three interactions results in forces that are attractive over several particle diameters, become repulsive at close approach, and are again attractive at contact. In the presence of sound-induced athermal fluctuations that generate particle collisions, the interplay of these three forces enables the formation of particle chains with anisotropic interactions that depend on chain size and shape due to multibody effects. With the control of the kinetic pathways and the strength of the contact cohesion, different patterns can be assembled, from triangular lattices to labyrinthine patterns of chains to lacelike networks of interconnected rings. These results shed light on the multibody character of acoustic interactions and can be utilized to direct the self-assembly of particles. Published by the American Physical Society2025more » « less
An official website of the United States government

