skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D printed feathers with embedded aerodynamic sensing
Abstract Bird flight is often characterized by outstanding aerodynamic efficiency, agility and adaptivity in dynamic conditions. Feathers play an integral role in facilitating these aspects of performance, and the benefits feathers provide largely derive from their intricate and hierarchical structures. Although research has been attempted on developing membrane-type artificial feathers for bio-inspired aircraft and micro air vehicles (MAVs), fabricating anatomically accurate artificial feathers to fully exploit the advantages of feathers has not been achieved. Here, we present our 3D printed artificial feathers consisting of hierarchical vane structures with feature dimensions spanning from 10−2to 102mm, which have remarkable structural, mechanical and aerodynamic resemblance to natural feathers. The multi-step, multi-scale 3D printing process used in this work can provide scalability for the fabrication of artificial feathers tailored to the specific size requirements of aircraft wings. Moreover, we provide the printed feathers with embedded aerodynamic sensing ability through the integration of customized piezoresistive and piezoelectric transducers for strain and vibration measurements, respectively. Hence, the 3D printed feather transducers combine the aerodynamic advantages from the hierarchical feather structure design with additional aerodynamic sensing capabilities, which can be utilized in future biomechanical studies on birds and can contribute to advancements in high-performance adaptive MAVs.  more » « less
Award ID(s):
1935216
PAR ID:
10554020
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
19
Issue:
6
ISSN:
1748-3182
Format(s):
Medium: X Size: Article No. 066010
Size(s):
Article No. 066010
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Some bird species exhibit a flight behavior known as whiffling, in which the bird flies upside-down during landing, predator evasion, or courtship displays. Flying inverted causes the flight feathers to twist, creating gaps in the wing’s trailing edge. It has been suggested that these gaps decrease lift at a potentially lower energy cost, enabling the bird to maneuver and rapidly descend. Thus, avian whiffling has parallels to an uncrewed aerial vehicle (UAV) using spoilers for rapid descent and ailerons for roll control. However, while whiffling has been previously described in the biological literature, it has yet to directly inspire aerodynamic design. In the current research, we investigated if gaps in a wing’s trailing edge, similar to those caused by feather rotation during whiffling, could provide an effective mechanism for UAV control, particularly rapid descent and banking. To address this question, we performed a wind tunnel test of 3D printed wings with a varying amount of trailing edge gaps and compared the lift and rolling moment coefficients generated by the gapped wings to a traditional spoiler and aileron. Next, we used an analytical analysis to estimate the force and work required to actuate gaps, spoiler, and aileron. Our results showed that gapped wings did not reduce lift as much as a spoiler and required more work. However, we found that at high angles of attack, the gapped wings produced rolling moment coefficients equivalent to upwards aileron deflections of up to 32.7° while requiring substantially less actuation force and work. Thus, while the gapped wings did not provide a noticeable benefit over spoilers for rapid descent, a whiffling-inspired control surface could provide an effective alternative to ailerons for roll control. These findings suggest a novel control mechanism that may be advantageous for small fixed-wing UAVs, particularly energy-constrained aircraft. 
    more » « less
  2. Abstract Microneedle arrays show many advantages in drug delivery applications due to their convenience and reduced risk of infection. Compared to other microscale manufacturing methods, 3D printing easily overcomes challenges in the fabrication of microneedles with complex geometric shapes and multifunctional performance. However, due to material characteristics and limitations on printing capability, there are still bottlenecks to overcome for 3D printed microneedles to achieve the mechanical performance needed for various clinical applications. The hierarchical structures in limpet teeth, which are extraordinarily strong, result from aligned fibers of mineralized tissue and protein‐based polymer reinforced frameworks. These structures provide design inspiration for mechanically reinforced biomedical microneedles. Here, a bioinspired microneedle array is fabricated using magnetic field‐assisted 3D printing (MF‐3DP). Micro‐bundles of aligned iron oxide nanoparticles (aIOs) are encapsulated by polymer matrix during the printing process. A bioinspired 3D‐printed painless microneedle array is fabricated, and suitability of this microneedle patch for drug delivery during long‐term wear is demonstrated. The results reported here provide insights into how the geometrical morphology of microneedles can be optimized for the painless drug delivery in clinical trials. 
    more » « less
  3. Carotenoid pigments serve many endogenous functions in organisms, but some of the more fascinating are the external displays of carotenoids in the colorful red, orange and yellow plumages of birds. Since Darwin, biologists have been curious about the selective advantages (e.g., mate attraction) of having such ornate features, and, more recently, advances in biochemical methods have permitted researchers to explore the composition and characteristics of carotenoid pigments in feathers. Here we review contemporary methods for extracting and analyzing carotenoids in bird feathers, with special attention to the difficulties of removal from the feather keratin matrix, the possibility of feather carotenoid esterification and the strengths and challenges of different analytical methods like high-performance liquid chromatography and Raman spectroscopy. We also add an experimental test of current common extraction methods (e.g., mechanical, thermochemical) and find significant differences in the recovery of specific classes of carotenoids, suggesting that no single approach is best for all pigment or feather types. 
    more » « less
  4. Feathers are arguably the most complex integumentary structures in the entire animal kingdom. The evolutionary origins of feathers are still debated, but growing evidence from both molecular studies in extinct theropods [1–8] and living birds (e.g., [9–18]), as well as numerous fossil discoveries of structures morphologically consistent with feathers (e.g., [4,19–25]) indicate that feathers arose from filamentous structures first identifed in some theropod dinosaurs and birds more than 160 million years ago (e.g., [2,26,27]). However, some data suggest that integumentary structures similar to those from which feathers derived may have been present at the base of Dinosauria [28,29] or perhaps, the base of Archosauria ([30,31] and references therein). Because modern feathers are not biomineralized in life (contra [32,33]) their persistence in the fossil record is counterintuitive, but critical. The impressions of feathers in sediments surrounding skeletal elements led to the identification of Archaeopteryx as the first bird [34,35], but there was no organic trace with this specimen to suggest that any original material remained. However, the first specimen attributed to Archaeopteryx was a single, isolated feather [36]. This specimen presented differently from feather impressions surrounding the skeletal remains, instead visualized as a carbonized trace clearly distinct from the embedding sediments, suggesting that taphonomic processes resulting in preservation differed between the isolated feather and the skeletal specimen. The environmental factors resulting in these different modes of preservation remain relatively unexplored. 
    more » « less
  5. Abstract 4D printing is an emerging field where 3D printing techniques are used to pattern stimuli‐responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (E) range of 10−4to 10 MPa during shape change. This restricts the scalability, actuation stress, and load‐bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit anEthat is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self‐sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry is designed and printed that morphs into a 3D self‐standing lifting robot, setting new records for weight‐normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, the ink palette is employed to create and print planar lattice structures that transform into various self‐supporting complex 3D shapes. These contributions are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight. 
    more » « less