The elliptic flow
Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a
- Award ID(s):
- 2120774
- PAR ID:
- 10554141
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Light: Science & Applications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2047-7538
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract of$$(v_2)$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0}$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$${\textrm{D}}^{0})$$ TeV with the ALICE detector at the LHC. The$$\sqrt{s_{\textrm{NN}}} = 5.02$$ mesons were reconstructed at midrapidity$${\textrm{D}}^{0}$$ from their hadronic decay$$(|y|<0.8)$$ , in the transverse momentum interval$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ GeV/$$2< p_{\textrm{T}} < 12$$ c . The result indicates a positive for non-prompt$$v_2$$ mesons with a significance of 2.7$${{\textrm{D}}^{0}}$$ . The non-prompt$$\sigma $$ -meson$${{\textrm{D}}^{0}}$$ is lower than that of prompt non-strange D mesons with 3.2$$v_2$$ significance in$$\sigma $$ , and compatible with the$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.$$v_2$$ -
Abstract Let
be an elliptically fibered$$X\rightarrow {{\mathbb {P}}}^1$$ K 3 surface, admitting a sequence of Ricci-flat metrics collapsing the fibers. Let$$\omega _{i}$$ V be a holomorphicSU (n ) bundle overX , stable with respect to . Given the corresponding sequence$$\omega _i$$ of Hermitian–Yang–Mills connections on$$\Xi _i$$ V , we prove that, ifE is a generic fiber, the restricted sequence converges to a flat connection$$\Xi _i|_{E}$$ . Furthermore, if the restriction$$A_0$$ is of the form$$V|_E$$ for$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$ n distinct points , then these points uniquely determine$$q_j\in E$$ .$$A_0$$ -
Abstract The electric
E 1 and magneticM 1 dipole responses of the nucleus$$N=Z$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$^{24}$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$\gamma ,\gamma ^{\prime }$$ , four$$J^{\pi }=1^-$$ , and six$$J^{\pi }=1^+$$ states in$$J^{\pi }=2^+$$ Mg. De-excitation$$^{24}$$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$\gamma $$ is observed, but this$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ nucleus exhibits only marginal$$N=Z$$ E 1 strength of less than e$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ fm$$^2 \, $$ . The$$^2$$ branching ratios in combination with the expected results from the Alaga rules demonstrate that$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ K is a good approximative quantum number for Mg. The use of the known$$^{24}$$ strength and the measured$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ level allows, in a two-state mixing model, an extraction of the difference$$1^+$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$\varDelta \beta _2^2$$ level.$$0^+_2$$ -
Abstract A search is reported for charge-parity
violation in$$CP$$ decays, using data collected in proton–proton collisions at$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$$\,\text {fb}^{-1}$$ and$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ . The$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ asymmetry in$$CP$$ is measured to be$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ asymmetry in the$$CP$$ decay. This is the first$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.$$CP$$ -
Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ c polarised and$$ \mu ^{+}$$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{-}$$ $$c^2$$ 17.0 GeV/$$< W<$$ , 1.0 (GeV/$$c^2$$ c )$$^2$$ 10.0 (GeV/$$< Q^2<$$ c ) and 0.01 (GeV/$$^2$$ c )$$^2$$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ c ) . Here,$$^2$$ W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ the transverse momentum of the$$p_{\textrm{T}}$$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ s -channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive production.$$\rho ^0$$