skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation
Award ID(s):
1832042
PAR ID:
10554237
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Microbiological Methods
Volume:
219
Issue:
C
ISSN:
0167-7012
Page Range / eLocation ID:
106908
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Here, we report the complete genome sequence of Rhodococcus qingshengii strain CL-05, which was isolated from pavement concrete in Newark, Delaware. The genome consists of a 6.29-Mbp chromosome and one plasmid (123,183 bp), encodes a total of 5,859 predicted proteins, and has a GC content of 62.5%. 
    more » « less
  2. null (Ed.)
  3. Pritchard, Leighton (Ed.)
    We report the genome ofRhodococcus opacusstrain MoAcy1 (DSM 44186), an aerobic soil isolate capable of using acetylene as its primary carbon and energy source (acetylenotrophy). The genome is composed of a single circular chromosome of ∼8 Mbp and two closed plasmids, with a G+C content of 67.3%. 
    more » « less
  4. null (Ed.)
  5. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is one per- and poly-fluoroalkyl substances commonly detected in the environment. While biotransformation of 6:2 FTSA has been reported, factors affecting desulfonation and defluorination of 6:2 FTSA remain poorly understood. This study elucidated the effects of carbon and sulfur sources on the gene expression of Rhodococcus jostii RHA1 which is responsible for the 6:2 FTSA biotransformation. While alkane monooxygenase and cytochrome P450 were highly expressed in ethanol-, 1-butanol-, and n-octane-grown RHA1 in sulfur-rich medium, these cultures only defluorinated 6:2 fluorotelomer alcohol but not 6:2 FTSA, suggesting that the sulfonate group in 6:2 FTSA hinders enzymatic defluorination. In sulfur-free growth media, alkanesulfonate monooxygenase was linked to desulfonation of 6:2 FTSA; while alkane monooxygenase, haloacid dehalogenase, and cytochrome P450 were linked to defluorination of 6:2 FTSA. The desulfonation and defluorination ability of these enzymes toward 6:2 FTSA were validated through heterologous gene expression and in vitro assays. Four degradation metabolites were confirmed and one was identified as a tentative metabolite. The results provide a new understanding of 6:2 FTSA biotransformation by RHA1. The genes encoding these desulfonating- and defluorinating-enzymes are potential markers to be used to assess 6:2 FTSA biotransformation in the environment. 
    more » « less