Abstract Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood‐scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife‐certified and water conservation) and two lawn‐dominated yard types (high‐ and low‐fertilizer application), and surrounding neighborhood‐scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood‐scale tree canopy cover and negatively associated with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high‐fertilizer yards and highest in wildlife‐certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife‐friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes.
more »
« less
This content will become publicly available on October 16, 2025
Soil animal communities demonstrate simplification without homogenization along an urban gradient
Abstract Urbanization profoundly impacts biodiversity and ecosystem function, exerting an immense ecological filter on the flora and fauna that inhabit it, oftentimes leading to simplistic and homogenous ecological communities. However, the response of soil animal communities to urbanization remains underexplored, and it is unknown whether their response to urbanization is like that of aboveground organisms. This study investigated the influence of urbanization on soil animal communities in 40 public parks along an urbanization gradient. We evaluated soil animal abundance, diversity, and community composition and related these measures to urban and soil characteristics at each park. The most urbanized parks exhibited reduced animal abundance, richness, and Shannon diversity. These changes were influenced by many variables underscoring the multifaceted influence of urbanization on ecological communities. Notably, contrary to our expectation, urbanization did not lead to community homogenization; instead, it acted stochastically, creating unique soil animal assemblages. This suggests that urban soil animal communities are concomitantly shaped by deterministic and stochastic ecological processes in urban areas. Our study highlights the intricate interplay between urbanization and soil animal ecology, challenging the notion of urban homogenization in belowground ecosystems and providing insight for managing and preserving belowground communities in urban areas.
more »
« less
- Award ID(s):
- 2123318
- PAR ID:
- 10554269
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecological Applications
- ISSN:
- 1051-0761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood-scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife-certified and water conservation) and two lawn-dominated yard types (high- and low-fertilizer application), and surrounding neighborhood-scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood-scale tree canopy cover and negatively associated with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high-fertilizer yards and highest in wildlife-certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife-friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes.more » « less
-
Abstract Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.more » « less
-
Abstract Urbanization can influence local richness (alpha diversity) and community composition (beta diversity) in numerous ways. For instance, reduced connectivity and land cover change may lead to the loss of native specialist taxa, decreasing alpha diversity. Alternatively, if urbanization facilitates nonnative species introductions and generalist taxa, alpha diversity may remain unchanged or increase, while beta diversity could decline due to the homogenization of community structure. Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand the consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated how landscape and local pond factors were correlated with the alpha diversity of aquatic plants, macroinvertebrates, and aquatic vertebrates. We also analyzed whether surrounding land use was associated with changes in community composition and the presence of specific taxa. We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites and a 15% decrease from rural to greenspace pond sites. Among landscape factors, adjacent developed land, mowed lawn cover, and greater distances to other waterbodies were negatively correlated with observed pond richness. Among pond level factors, habitat complexity was associated with increased richness, while nonnative fishes were associated with decreased richness. Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more nonnative species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. Our results suggest that integrating ponds into connected greenspaces, maintaining riparian vegetation, preventing nonnative fish introductions, and promoting habitat complexity may mitigate the negative effects of urbanization on aquatic richness. While ponds are small in size and rarely incorporated into urban conservation planning, the high beta diversity of distinct pond communities emphasizes their importance for supporting urban biodiversity.more » « less
-
Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes—urbanization and forest edge creation—on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new “suites” of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction—including increased greenhouse gas production—in temperate forest regions that are subsumed by urban expansion, both now and in the future.more » « less