This article covers historical and recent efforts to catalyse the dehydrocoupling of amines and silanes, a direct method for Si–N bond formation that offers hydrogen as a byproduct. In some applications, this transformation can be used as a sustainable replacement for traditional aminosilane synthesis, which demands corrosive chlorosilanes while generating one equivalent of ammonium salt waste for each Si–N bond that is formed. These advantages have driven the development of Si–N dehydrocoupling catalysts that span the periodic table, affording mechanistic insight that has led to advances in efficiency and selectivity. Given the divergence in precursors being used, characterization methods being relied on, and applications being targeted, this article highlights the formation of monomeric aminosilanes separately from oligomeric and polymeric aminosilanes. A recent study that allowed for the manganese catalysed synthesis of perhydropolysilazane and commercial chemical vapor deposition precursors is featured, and key opportunities for advancing the field of Si–N dehydrocoupling catalysis are discussed.
more »
« less
Sustainable Production of Chitin Nanowhiskers from Crustacean Biomass Using Cost-Effective Ionic Liquids: Strategies to Avoid Byproduct Formation
Nanochitin, especially in the form of chitin nanowhiskers (ChNWs), represents a significant advance in biopolymer technology due to its high specific surface area, superior tensile strength, and excellent thermal stability. Derived from crustacean waste, which contains 15–40% of chitin, these materials provide a sustainable option that diverts waste from landfills and contributes to environmental conservation. Traditional methods of isolating nanochitin are energy-intensive and generate substantial waste. This study introduces a more sustainable method using inexpensive ionic liquids (ILs) such as [Hmim][HSO4] and [HN222][HSO4], which bypass the costly and destructive steps of traditional procedures. This study also identified the byproduct in IL-mediated chitin hydrolysis reaction as calcium sulfate dihydrate and presented a solution to circumvent the byproduct formation. The effectiveness of the [HN222][HSO4] IL in producing ChNWs from both purified chitin and crustacean biomass was assessed, showing a high yield and maintaining the purity and structural integrity of chitin, thereby demonstrating a significant reduction in the environmental footprint of ChNW production.
more »
« less
- Award ID(s):
- 2243420
- PAR ID:
- 10554281
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sustainable Chemistry
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2673-4079
- Page Range / eLocation ID:
- 130 to 148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The amount of electronic waste (e-waste) globally has doubled in just five years, from approximately 20 million tons to 40 million tons of e-waste generated per year. In 2016, the global amount of e-waste reached an all-time high of 44.7 million tons. E-waste is an invaluable unconventional resource due to its high metal content, as nearly 40% of e-waste is comprised of metals. Unfortunately, the rapid growth of e-waste is alarming due to severe environmental impacts and challenges associated with complex resource recovery that has led to the use of toxic chemicals. Furthermore, there is a very unfortunate ethical issue related to the flow of e-wastes from developed countries to developing countries. At this time, e-waste is often open pit burned and toxic chemicals are used without adequate regulations to recover metals such as copper. The recovered metals are eventually exported back to the developed countries. Thus, the current global circular economy of e-waste is not sustainable in terms of environmental impact as well as creation of ethical dilemmas. Although traditional metallurgical processes can be extended to e-waste treatment technologies, that is not enough. The complexity of e-waste requires the development of a new generation of metallurgical processes that can separate and extract metals from unconventional components such as polymers and a wide range of metals. This review focuses on the science and engineering of both conventional and innovative separation and recovery technologies for e-wastes with special attention being given to the overall sustainability. Physical separation processes, including disassembly, density separation, and magnetic separation, as well as thermal treatment of the polymeric component, such as pyrolysis, are discussed for the separation of metals and non-metals from e-wastes. The subsequent metal recovery processes through pyrometallurgy, hydrometallurgy, and biometallurgy are also discussed in depth. Finally, insights on future research towards sustainable treatment and recovery of e-waste are presented including the use of supercritical CO 2 .more » « less
-
This review aims to examine microbial mechanisms for phosphorus (P) solubilization, assess the impacts of P mining and scarcity, and advocate for sustainable recycling strategies to enhance agricultural and environmental resilience. Phosphorus is an indispensable macronutrient for plant growth and agricultural productivity, yet its bioavailability in cultivation systems is often constrained. This scarcity has led to a heavy reliance on fertilizers derived from mined phosphate rock (PR), which is a finite resource usually contaminated with hazardous elements such as uranium, radium, and thorium. Plants absorb only about 10–20% of P from applied fertilizers, leading to significant inefficiencies and negative environmental consequences. Additionally, the uneven geographic distribution of PR reserves exacerbates global socioeconomic and geopolitical vulnerabilities. Healthy soils enriched with diverse microbial communities provide a sustainable avenue to address these growing challenges. Rhizospheric organisms, including phosphorus-solubilizing and phosphorus-mineralizing bacteria and arbuscular mycorrhizal fungi, are capable and pivotal in the sustainable conversion of inorganic and organic P into bioavailable forms, reducing reliance on synthetic fertilizers. The mechanisms used by these microbes often include releasing organic acids to lower soil pH and solubilize insoluble inorganic phosphorus compounds and the production of enzymes, such as phosphatases and phytases, to break down organic phosphorus compounds, including phytates, into bioavailable inorganic phosphate. Some microbes secrete chelating agents, such as siderophores, to bind metal ions and free phosphorus from insoluble complexes and use biofilms for P exchange. This review also advocates for the recycling second-generation P from organic waste as a sustainable and socially equitable alternative to conventional phosphate mining.more » « less
-
This research aimed to explore the potential of underutilized plant waste products from Philippine fruits as sustainable sources of phytochemicals, assessing the viability of green extraction methods. It focused on the antioxidant activities of extracts from fruit peels and pulps, comparing these to the benchmark antioxidant, L-Ascorbic acid (Vitamin C). Materials and Methods: Peels and pulps from selected local fruits, including Annona squamosa (sugar apple; atis), Musa acuminata (banana; lakatan), Sandoricum koetjape (cotton fruit; santol), Mangifera altissima (mango; paho) and Ananas comosus (pineapple; piña), were utilized. Standard phytochemical screening methods were employed to identify the presence of secondary metabolites in aqueous extracts. Quantification of antioxidant activities was conducted against DPPH. Results: Antioxidant activities of S. koetjape (cotton fruit; santol) and M. altissima (mango; paho) fruit extracts demonstrated better or comparable efficacy to L-Ascorbic acid (Vitamin C). Evidence was established that water-based extraction of secondary metabolites, which are polar, is both feasible and environmentally sustainable. Conclusion: Extracts from Philippine fruit waste products are viable sources of phytochemicals with significant antioxidant activities. Furthermore, water-based, green extraction methods are beneficial for environmental sustainability and the promotion of green waste management.more » « less
-
Despite adhesives having their origins in natural materials, most glues are formed from petroleum-based products. However, many natural adhesives lack the strength to compete with synthetic glues. Therefore, strong, sustainable alternatives are needed. Data presented here build on prior work that combines elemental sulfur, a petroleum byproduct, and garlic essential oil (GEO) which is composed of allyl sulfides, to make adhesives. Here, we have demonstrated that both sulfur and GEO can initiate polymerization at 160 °C with another petroleum byproduct, dicyclopentadiene, and a variety of natural monomers through the formation of sulfur radicals. In addition to using natural monomers and petroleum byproducts, these processes are solvent free and have high atom economy, limiting waste formation, and meeting many principles of green chemistry. Much of this work has focused on determining the effect of each sulfur source on polymerization and adhesion. A family of polymers were created with varied S : GEO : monomer ratios and characterized to determine differences in their chemical and materials properties. Despite similarities in the reaction mechanism, sulfur tends to polymerize more rapidly and create materials that are more ductile and more easily reprocessed. GEO is slower to react causing more polymerization to take place on the adherend surface yielding a more brittle polymer with higher maximum adhesion strength but lower work of adhesion. Both polymers exhibited effective adhesive recyclability. Overall, a combination of natural oils and petroleum byproducts were combined to make inexpensive, sustainable, recyclable adhesives.more » « less
An official website of the United States government

