skip to main content

Title: Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies
The amount of electronic waste (e-waste) globally has doubled in just five years, from approximately 20 million tons to 40 million tons of e-waste generated per year. In 2016, the global amount of e-waste reached an all-time high of 44.7 million tons. E-waste is an invaluable unconventional resource due to its high metal content, as nearly 40% of e-waste is comprised of metals. Unfortunately, the rapid growth of e-waste is alarming due to severe environmental impacts and challenges associated with complex resource recovery that has led to the use of toxic chemicals. Furthermore, there is a very unfortunate ethical issue related to the flow of e-wastes from developed countries to developing countries. At this time, e-waste is often open pit burned and toxic chemicals are used without adequate regulations to recover metals such as copper. The recovered metals are eventually exported back to the developed countries. Thus, the current global circular economy of e-waste is not sustainable in terms of environmental impact as well as creation of ethical dilemmas. Although traditional metallurgical processes can be extended to e-waste treatment technologies, that is not enough. The complexity of e-waste requires the development of a new generation of metallurgical processes that can separate and extract metals from unconventional components such as polymers and a wide range of metals. This review focuses on the science and engineering of both conventional and innovative separation and recovery technologies for e-wastes with special attention being given to the overall sustainability. Physical separation processes, including disassembly, density separation, and magnetic separation, as well as thermal treatment of the polymeric component, such as pyrolysis, are discussed for the separation of metals and non-metals from e-wastes. The subsequent metal recovery processes through pyrometallurgy, hydrometallurgy, and biometallurgy are also discussed in depth. Finally, insights on future research towards sustainable treatment and recovery of e-waste are presented including the use of supercritical CO 2 .  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Green Chemistry
Page Range / eLocation ID:
919 to 936
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    If the material intensive enterprises in an urban area of several million people shared physical resources that might otherwise be wasted, what environmental and public benefits would result? This study develops an algorithm based on lifecycle assessment tools for determining a city’sindustrial symbiosis potential—that is, the sum of the wastes and byproducts from a city’s industrial enterprises that could reasonably serve as resource inputs to other local industrial processes. Rather than report, as do many previous papers, on private benefits to firms, this investigation focuses on public benefits to cities by converting the maximum quantity of resources recoverable by local enterprises into an estimate of the capacity of municipal infrastructure conserved in terms of landfill space and water demand. The results here test this novel approach for the district of Mysuru (Mysore), India. We find that the industrial symbiosis potential calculated based on analysis of the inputs and outputs of ∼1000 urban enterprises, translates into 84 000 tons of industrial waste, greater than 74 000 tons of CO2e, and 22 million liters per day of wastewater. The method introduced here demonstrates how industrial symbiosis links private production and public infrastructure to improve the resource efficiency of a city by creating an opportunity to extend the capacity of public infrastructure and generate public health co-benefits.

    more » « less
  2. Due to the rapid development of electronic devices and their shortened lifespans, waste electrical and electronic equipment (WEEE), or E-waste, is regarded as one of the most fast-growing wastes. Among the categories of E-waste, waste printed circuit boards (WPCBs) are considered the most complex waste materials, owing to their various constitutes, such as plastics, capacitors, wiring, and metal plating. To date, a variety of processing technologies have been developed and studied. However, due to the heterogeneous nature of WPCBs, a thorough study on both material characterization and physical separation was needed to provide a better understanding in material handling, as well as to prepare a suitable feedstock prior to the downstream chemical process. In the present study, integrated size and density separations were performed to understand the liberation of contained metals, particularly Cu and Au, from the plastic substrates. The separation performance was evaluated by the elemental concentration, distribution, and enrichment ratio of valuable metals in different size and density fractions. Further, SEM-EDS on the density separation products was carried out to characterize the surface morphology, elemental mapping, and quantified elemental contents. Moreover, thermo-gravimetric properties of waste PCBs were investigated by TGA, in order to understand the effect of temperature on volatile and combustible fractions during the thermal processing. 
    more » « less
  3. null (Ed.)
    Sustainable transition to low carbon and zero waste economy requires a macroscopic evaluation of opportunities and impact of adopting emerging technologies in a region. However, a full assessment of current physical flows and wastes is a tedious task, thus leading to lack of comprehensive assessment before scale up and adoption of emerging technologies. Utilizing the mechanistic models developed for engineering and biological systems with macroeconomic framework of Input-Output models, we propose a novel integrated approach to fully map the physical economy, that automates the process of mapping industrial flows and wastes in a region. The approach is demonstrated by mapping the agro-based physical economy of the state of Illinois, USA by using mechanistic models for 10 sectors, which have high impact on waste generation. Each model mechanistically simulates the material transformation processes in the economic sector and provides the material flow information for mapping. The model for physical economy developed in the form of a Physical Input-Output Table (PIOT) captures the interindustry physical interactions in the region and waste flows, thus providing insights into the opportunities to implement circular economy strategies i.e., adoption of recycling technologies at large scale. In Illinois, adoption of technologies for industrial waste-water & hog manure recycling will have the highest impact by reducing > 62 % of hog industry waste, > 99 % of soybean hull waste, and > 96 % of dry corn milling (corn ethanol production) waste reduction. Small % reduction in fertilizer manufacturing waste was also observed. The physical economy model revealed that Urea sector had the highest material use of 5.52E+08 tons and green bean farming with lowest material use of 1.30E+05 tons for the year modeled (2018). The mechanistic modeling also allowed to capture elemental flows across the physical economy with Urea sector using 8.25E+07 tons of carbon per operation-year (highest) and bean farming using 3.90E+04 tons of elemental carbon per operation-year (least). The approach proposed here establishes a connection between engineering and physical economy modeling community for standardizing the mapping of physical economy that can provide insights for successfully transitioning to a low carbon and zero waste circular economy. 
    more » « less
  4. Plastic waste represents one of the most urgent environmental challenges facing humankind. Upcycling has been proposed to solve the low profitability and high market sensitivity of known recycling methods. Existing upcycling methods operate under energy-intense conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. Herein, we report a tandem degradation-upcycling strategy to exploit high-value chemicals from polystyrene (PS) waste with high selectivity. We first degrade PS waste to aromatics using ultraviolet (UV) light and then valorize the intermediate to diphenylmethane. Low-cost AlCl 3 catalyzes both the reactions of degradation and upcycling at ambient temperatures under atmospheric pressure. The degraded intermediates can advantageously serve as solvents for processing the solid plastic wastes, forming a self-sustainable circuitry. The low-value-input and high-value-output approach is thus substantially more sustainable and economically viable than conventional thermal processes, which operate at high-temperature, high-pressure conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. The cascade strategy is resilient to impurities from plastic waste streams and is generalizable to other high-value chemicals (e.g., benzophenone, 1,2-diphenylethane, and 4-phenyl-4-oxo butyric acid). The upcycling to diphenylmethane was tested at 1-kg laboratory scale and attested by industrial-scale techno-economic analysis, demonstrating sustainability and economic viability without government subsidies or tax credits. 
    more » « less
  5. Highlights Aquatic vegetation-based nutrient recovery offers an alternate approach for treating agricultural wastewater. Microalgae and duckweed can upcycle waste nutrients into valuable bio-based products. Producing feed, fertilizer, and fuel from manure-grown aquatic vegetation promotes a circular N-bioeconomy. Abstract . The massive amounts of nutrients that are currently released into the environment as waste have the potential to be recovered and transformed from a liability into an asset through photosynthesis, industry insight, and ecologically informed engineering design aimed at circularity. Fast-growing aquatic plant-like vegetation such as microalgae and duckweed have the capacity to enable local communities to simultaneously treat their own polluted water and retain nutrients that underlie the productivity of modern agriculture. Not only are they highly effective at upcycling waste nutrients into protein-rich biomass, microalgae and duckweed also offer excellent opportunities to substitute or complement conventional synthetic fertilizers, feedstocks in biorefineries, and livestock feed while simultaneously reducing the energy consumption and greenhouse gas emissions that would otherwise be required for their production and transport to farms. Integrated systems growing microalgae or duckweed on manure or agricultural runoff, and subsequent reuse of the harvested biomass to produce animal feed, soil amendments, and biofuels, present a sustainable approach to advancing circularity in agricultural systems. This article provides a review of past efforts toward advancing the circular nitrogen bioeconomy using microalgae- and duckweed-based technologies to treat, recover, and upcycle nutrients from agricultural waste. The majority of the work with microalgae- and duckweed-based wastewater treatment has been concentrated on municipal and industrial effluents, with <50% of studies focusing on agricultural wastewater. In terms of scale, more than 91% of the microalgae-based studies and 58% of the duckweed-based studies were conducted at laboratory-scale. While the range of nutrient removals achieved using these technologies depends on various factors such as species, light, and media concentrations, 65% to 100% of total N, 82% to 100% of total P, 98% to 100% of NO3-, and 96% to 100% of NH3/NH4+ can be removed by treating wastewater with microalgae. For duckweed, removals of 75% to 98% total N, 81% to 93% total P, 72% to 98% NH3/NH4+, and 57% to 92% NO3- have been reported. Operating conditions such as hydraulic retention time, pH, temperature, and the presence of toxic nutrient levels and competing species in the media should be given due consideration when designing these systems to yield optimum benefits. In addition to in-depth studies and scientific advancements, policies encouraging supply chain development, market penetration, and consumer acceptance of these technologies are vitally needed to overcome challenges and to yield substantial socio-economic and environmental benefits from microalgae- and duckweed-based agricultural wastewater treatment. Keywords: Circular bioeconomy, Duckweed, Manure treatment, Microalgae, Nitrogen, Nutrient recycling, Wastewater treatment. 
    more » « less