skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural Mechanisms Underlying Robust Target Selection in Response to Microstimulation of the Oculomotor System
Despite its prevalence in studying the causal roles of different brain circuits in cognitive processes, electrical microstimulation often results in inconsistent behavioral effects. These inconsistencies are assumed to be due to multiple mechanisms, including habituation, compensation by other brain circuits, and contralateral suppression. Considering the presence of reinforcement in most experimental paradigms, we hypothesized that interactions between reward feedback and microstimulation could contribute to inconsistencies in behavioral effects of microstimulation. To test this, we analyzed data from electrical microstimulation of the frontal eye field of male macaques during a value-based decision–making task and constructed network models to capture choice behavior. We found evidence for microstimulation-dependent adaptation in saccadic choice, such that in stimulated trials, monkeys’ choices were biased toward the target in the response field of the microstimulated site (Tin). In contrast, monkeys showed a bias away fromTinin nonstimulated trials following microstimulation. Critically, this bias slowly decreased as a function of the time since the last stimulation. Moreover, microstimulation-dependent adaptation was influenced by reward outcomes in preceding trials. Despite these local effects, we found no evidence for the global effects of microstimulation on learning and sensitivity to the reward schedule. By simulating choice behavior across various network models, we found a model in which microstimulation and reward-value signals interact competitively through reward-dependent plasticity can best account for our observations. Our findings indicate a reward-dependent compensatory mechanism that enhances robustness to perturbations within the oculomotor system and could explain the inconsistent outcomes observed in previous microstimulation studies.  more » « less
Award ID(s):
1943767
PAR ID:
10554321
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.1523
Date Published:
Journal Name:
The Journal of Neuroscience
Volume:
45
Issue:
3
ISSN:
0270-6474
Format(s):
Medium: X Size: Article No. e2356232024
Size(s):
Article No. e2356232024
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Primate vision is characterized by constant, sequential processing and selection of visual targets to fixate. Although expected reward is known to influence both processing and selection of visual targets, similarities and differences between these effects remain unclear mainly because they have been measured in separate tasks. Using a novel paradigm, we simultaneously measured the effects of reward outcomes and expected reward on target selection and sensitivity to visual motion in monkeys. Monkeys freely chose between two visual targets and received a juice reward with varying probability for eye movements made to either of them. Targets were stationary apertures of drifting gratings, causing the end points of eye movements to these targets to be systematically biased in the direction of motion. We used this motion-induced bias as a measure of sensitivity to visual motion on each trial. We then performed different analyses to explore effects of objective and subjective reward values on choice and sensitivity to visual motion to find similarities and differences between reward effects on these two processes. Specifically, we used different reinforcement learning models to fit choice behavior and estimate subjective reward values based on the integration of reward outcomes over multiple trials. Moreover, to compare the effects of subjective reward value on choice and sensitivity to motion directly, we considered correlations between each of these variables and integrated reward outcomes on a wide range of timescales. We found that, in addition to choice, sensitivity to visual motion was also influenced by subjective reward value, although the motion was irrelevant for receiving reward. Unlike choice, however, sensitivity to visual motion was not affected by objective measures of reward value. Moreover, choice was determined by the difference in subjective reward values of the two options, whereas sensitivity to motion was influenced by the sum of values. Finally, models that best predicted visual processing and choice used sets of estimated reward values based on different types of reward integration and timescales. Together, our results demonstrate separable influences of reward on visual processing and choice, and point to the presence of multiple brain circuits for the integration of reward outcomes. 
    more » « less
  2. Abstract Evidence that the hippocampus is critical for spatial memory in nonnavigational tests is mixed. A recent study reported that temporary hippocampal inactivation impaired spatial memory in the nonnavigational Hamilton Search Task in monkeys. However, several studies have documented no impairment on other nonnavigational spatial memory tests following permanent hippocampal lesions. It was hypothesized that transient, but not permanent, hippocampal disruption produces deficits because monkeys undergoing transient inactivation continue to try to use a hippocampal‐dependent strategy, whereas monkeys with permanent lesions use a nonhippocampal‐dependent strategy. We evaluated this hypothesis by testing five rhesus monkeys with hippocampal lesions and five controls on a computerized analogue of the Hamilton Search Task. On each trial, monkeys saw an array of squares on a touchscreen, each of which “hid” one reward. Retrieving a reward depleted that location and monkeys continued selecting squares until they found all rewards. The optimal strategy is to remember chosen locations and choose each square once. Unlike the inactivation study, monkeys with hippocampal damage were as accurate as controls regardless of retention interval. Critically, we found no evidence that the groups used different strategies, as measured by learning rates, spatial search biases, perseverative win‐stay errors, or inter‐choice distance. This discrepancy between the effect of inactivations and lesions may result from off‐target effects of inactivations or as‐yet‐unidentified differences between the physical and computerized tasks. Combined with previous evidence that hippocampal damage impairs navigational memory in monkeys, this evidence constrains the role of the hippocampus in spatial memory as being critical for navigational tests that likely involve allocentric spatial memory but not nonnavigational tests that likely involve egocentric spatial memory. 
    more » « less
  3. Abstract Successful behavioral adaptation requires an ongoing assessment of rewarding outcomes based on one’s current state. A frontocentral ERP associated with reward feedback, the reward positivity (RewP), has been linked to reflect information about reward value and motivational states. It is, however, unclear if changes in the RewP are influenced by changes in reward value as a function of motivational state. To examine this, hungry participants (n= 31) completed two rounds of a modified Doors Task incorporating Pavlovian conditioning during EEG recordings and obtained feedback associated with sweet and savory food reinforcers equally matched in pleasantness and desirability. Participants underwent reinforcer devaluation, a paradigm designed to isolate inference-based behavior based on decreasing reward value, in between rounds by eating one of the foods to satiety. Prior to devaluation, participants were hungry and rated both food reinforcers equally pleasant. After devaluation, participants were sated and rated the devalued food, but not the non-devalued food, significantly less pleasant, suggesting a sensory-specific change in reward value. Logistic regression of win-stay/lose-switch behavior during the Doors Task shows participants made sensory-specific adjustments in food preferences during postdevaluation. Nonparametric permutation tests based on the tmax statistic performed revealed no significant differences in RewP amplitudes, suggesting the RewP is insensitive to reinforcer devaluation. This could not be explained by differences in perceived pleasantness or desirability. These findings suggest that affective and motivational factors such as tracking inferences based on decreases in reward value did not modulate the RewP. 
    more » « less
  4. ABSTRACT Metacognition, or monitoring and controlling one's knowledge, is a key feature of human cognition. Accumulating evidence shows that foundational forms of metacognition are already present in young infants and then scaffold later‐emerging skills. Although many animals exhibit cognitive processes relevant to metacognition, it is unclear if other species share the developmental trajectories seen in humans. Here, we examine the emergence of metacognitive information‐seeking in rhesus monkeys (Macaca mulatta). We presented a large sample of semi‐free‐ranging monkeys, ranging from juvenility to adulthood, with a one‐shot task where they could seek information about a food reward by bending down to peer into a center vantage point in an array of tubes. In thehiddencondition, information‐seeking was necessary as no food was visible on the apparatus, whereas in thevisiblecontrol, condition information‐seeking was not necessary to detect the location of the reward. Monkeys sought information at the center vantage point more often when it was necessary than in the control condition, and younger monkeys already showed competency similar to adults. We also tracked additional monkeys who voluntarily chose not to approach to assess monkeys’ ability to actively infer opportunities for information‐seeking, and again found similar performance in juveniles and adults. Finally, we found that monkeys were overall slower to make metacognitive inferences than to approach known reward, and that younger monkeys were specifically slower to detect opportunities for information‐seeking compared to adults. These results indicate that many features of mature metacognition are already detectable in young monkeys, paralleling evidence for “core metacognition” in infant humans. 
    more » « less
  5. The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations. 
    more » « less