skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Damping of Strong GHz Waves near Magnetars and the Origin of Fast Radio Bursts
Abstract We investigate how a fast radio burst (FRB) emitted near a magnetar would propagate through its surrounding dipole magnetosphere at radiir= 107–109cm. First, we show that a GHz burst emitted in the O-mode with luminosityL≫ 1040erg s−1is immediately damped for all propagation directions except a narrow cone along the magnetic axis. Then, we examine bursts in the X-mode. GHz waves propagating near the magnetic equator behave as magnetohydrodynamic (MHD) waves if they haveL≫ 1040erg s−1. The waves develop plasma shocks in each oscillation and dissipate at r 3 × 10 8 L 42 1 / 4 cm. Waves with lowerLor propagation directions closer to the magnetic axis do not obey MHD. Instead, they interact with individual particles and require a kinetic description. The kinetic interaction quickly accelerates particles to Lorentz factors 104–105at the expense of the wave energy, which again results in strong damping of the wave. In either propagation regime, MHD or kinetic, the dipole magnetosphere surrounding the FRB source acts as a pillow absorbing the radio burst and reradiating the absorbed energy in X-rays. These results constrain the origin of observed FRBs. We argue that the observed FRBs avoid damping because they are emitted by relativistic outflows from magnetospheric explosions, so that the GHz waves do not need to propagate through the outer equilibrium magnetosphere surrounding the magnetar.  more » « less
Award ID(s):
2009453
PAR ID:
10554323
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
975
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 223
Size(s):
Article No. 223
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The repeating fast radio burst FRB 20190520B is localized to a galaxy atz= 0.241, much closer than expected given its dispersion measure DM = 1205 ± 4 pc cm−3. Here we assess implications of the large DM and scattering observed from FRB 20190520B for the host galaxy’s plasma properties. A sample of 75 bursts detected with the Five-hundred-meter Aperture Spherical radio Telescope shows scattering on two scales: a mean temporal delayτ(1.41 GHz) = 10.9 ± 1.5 ms, which is attributed to the host galaxy, and a mean scintillation bandwidth Δνd(1.41 GHz) = 0.21 ± 0.01 MHz, which is attributed to the Milky Way. Balmer line measurements for the host imply an Hαemission measure (galaxy frame) EMs= 620 pc cm−6× (T/104K)0.9, implying DMof order the value inferred from the FRB DM budget, DM h = 1121 138 + 89 pc cm−3for plasma temperatures greater than the typical value 104K. Combiningτand DMhyields a nominal constraint on the scattering amplification from the host galaxy F ˜ G = 1.5 0.3 + 0.8 ( pc 2 km ) 1 / 3 , where F ˜ describes turbulent density fluctuations andGrepresents the geometric leverage to scattering that depends on the location of the scattering material. For a two-screen scattering geometry whereτarises from the host galaxy and Δνdfrom the Milky Way, the implied distance between the FRB source and dominant scattering material is ≲100 pc. The host galaxy scattering and DM contributions support a novel technique for estimating FRB redshifts using theτ–DM relation, and are consistent with previous findings that scattering of localized FRBs is largely dominated by plasma within host galaxies and the Milky Way. 
    more » « less
  2. Abstract The presence of magnetic fields in the late inspiral of black hole–neutron star binaries could lead to potentially detectable electromagnetic precursor transients. Using general-relativistic force-free electrodynamics simulations, we investigate premerger interactions of the common magnetosphere of black hole–neutron star systems. We demonstrate that these systems can feature copious electromagnetic flaring activity, which we find depends on the magnetic field orientation but not on black hole spin. Due to interactions with the surrounding magnetosphere, these flares could lead to fast-radio-burst-like transients and X-ray emission, with EM 10 41 B * / 10 12 G 2 erg s 1 as an upper bound on the luminosity, whereB*is the magnetic field strength on the surface of the neutron star. 
    more » « less
  3. Abstract We present the localization and host galaxy of FRB 20190208A, a repeating source of fast radio bursts (FRBs) discovered using CHIME/FRB. As part of the Pinpointing REpeating ChIme Sources with EVN dishes repeater localization program on the European VLBI Network (EVN), we monitored FRB 20190208A for 65.6 hr at ∼1.4 GHz and detected a single burst, which led to its very long baseline interferometry localization with 260 mas uncertainty (2σ). Follow-up optical observations with the MMT Observatory (i≳ 25.7 mag (AB)) found no visible host at the FRB position. Subsequent deeper observations with the Gran Telescopio Canarias, however, revealed an extremely faint galaxy (r= 27.32 ± 0.16 mag), very likely (99.95%) associated with FRB 20190208A. Given the dispersion measure of the FRB (∼580 pc cm−3), even the most conservative redshift estimate ( z max 0.83 ) implies that this is the lowest-luminosity FRB host to date (≲108L), even less luminous than the dwarf host of FRB 20121102A. We investigate how localization precision and the depth of optical imaging affect host association and discuss the implications of such a low-luminosity dwarf galaxy. Unlike the other repeaters with low-luminosity hosts, FRB 20190208A has a modest Faraday rotation measure of a few tens of rad m−2, and EVN plus Very Large Array observations reveal no associated compact persistent radio source. We also monitored FRB 20190208A for 40.4 hr over 2 yr as part of the Extragalactic Coherent Light from Astrophysical Transients repeating FRB monitoring campaign on the Nançay Radio Telescope and detected one burst. Our results demonstrate that, in some cases, the robust association of an FRB with a host galaxy will require both high localization precision and deep optical follow-up. 
    more » « less
  4. Abstract One scenario for the generation of fast radio bursts (FRBs) is magnetic reconnection in a current sheet of the magnetar wind. Compressed by a strong magnetic pulse induced by a magnetar flare, the current sheet fragments into a self-similar chain of magnetic islands. Time-dependent plasma currents at their interfaces produce coherent radiation during their hierarchical coalescence. We investigate this scenario using 2D radiative relativistic particle-in-cell simulations to compute the efficiency of the coherent emission and to obtain frequency scalings. Consistent with expectations, a fraction of the reconnected magnetic field energy,f∼ 0.002, is converted to packets of high-frequency fast magnetosonic waves, which can escape from the magnetar wind as radio emission. In agreement with analytical estimates, we find that magnetic pulses of 1047erg s−1can trigger relatively narrowband GHz emission with luminosities of approximately 1042erg s−1, sufficient to explain bright extragalactic FRBs. The mechanism provides a natural explanation for a downward frequency drift of burst signals, as well as the ∼100 ns substructure recently detected inFRB 20200120E. 
    more » « less
  5. Abstract The dispersion measure of fast radio bursts (FRBs), arising from the interactions with free electrons along the propagation path, constitutes a unique probe of the cosmic baryon distribution. Their constraining power is further enhanced in combination with observations of the foreground large-scale structure and intervening galaxies. In this work, we present the first constraints on the partition of the cosmic baryons between the intergalactic medium (IGM) and circumgalactic medium (CGM), inferred from the FLIMFLAM spectroscopic survey. In its first data release, the FLIMFLAM survey targeted galaxies in the foreground of eight localized FRBs. Using Bayesian techniques, we reconstruct the underlying ∼Mpc-scale matter density field that is traced by the IGM gas. Simultaneously, deeper spectroscopy of intervening foreground galaxies (at impact parametersb≲r200) and the FRB host galaxies constrains the contribution from the CGM. Applying Bayesian parameter inference to our data and assuming a fiducial set of priors, we infer the IGM cosmic baryon fraction to be f igm = 0.59 0.10 + 0.11 and a CGM gas fraction of f gas = 0.55 0.29 + 0.26 for 1010M≲Mhalo≲ 1013Mhalos. The mean FRB host dispersion measure (rest-frame) in our sample is DM host = 90 19 + 29 pc cm 3 , of which DM host unk = 69 19 + 28 pc cm 3 arises from the host galaxy interstellar medium (ISM) and/or the FRB progenitor environment. While our currentfigmandfgasuncertainties are too broad to constrain most galactic feedback models, this result marks the first measurement of the IGM and CGM baryon fractions, as well as the first systematic separation of the FRB host dispersion measure into two components: arising from the halo and from the inner ISM/FRB engine. 
    more » « less