skip to main content


Search for: All records

Award ID contains: 2009453

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nonlinear effects are crucial for the propagation of fast radio bursts (FRBs) near the source. We study the filamentation of FRBs in the relativistic winds of magnetars, which are commonly invoked as the most natural FRB progenitors. As a result of filamentation, the particle number density and radiation intensity develop strong gradients along the direction of the wind magnetic field. A steady state is reached when the plasma pressure balances the ponderomotive force. In such a steady state, particles are confined in periodically spaced thin sheets, and electromagnetic waves propagate between them as in a waveguide. We show the following. (i) The dispersion relation resembles that in the initial homogeneous plasma, but the effective plasma frequency is determined by the separation of the sheets, not directly by the mean particle density. (ii) The contribution of relativistic magnetar winds to the dispersion measure of FRBs could be several orders of magnitude larger than previously thought. The dispersion measure of the wind depends on the properties of individual bursts (e.g., the luminosity) and therefore can change significantly among different bursts from repeating FRBs. (iii) Induced Compton scattering is suppressed because most of the radiation propagates in near-vacuum regions.

     
    more » « less
  2. ABSTRACT

    We perform 2D particle-in-cell simulations of magnetic reconnection in electron-ion plasmas subject to strong Compton cooling and calculate the X-ray spectra produced by this process. The simulations are performed for trans-relativistic reconnection with magnetization 1 ≤ σ ≤ 3 (defined as the ratio of magnetic tension to plasma rest-mass energy density), which is expected in the coronae of accretion discs around black holes. We find that magnetic dissipation proceeds with inefficient energy exchange between the heated ions and the Compton-cooled electrons. As a result, most electrons are kept at a low temperature in Compton equilibrium with radiation, and so thermal Comptonization cannot reach photon energies $\sim 100\,$ keV observed from accreting black holes. Nevertheless, magnetic reconnection efficiently generates $\sim 100\,$ keV photons because of mildly relativistic bulk motions of the plasmoid chain formed in the reconnection layer. Comptonization by the plasmoid motions dominates the radiative output and controls the peak of the radiation spectrum Epk. We find Epk ∼ 40 keV for σ = 1 and Epk ∼ 100 keV for σ = 3. In addition to the X-ray peak around 100 keV, the simulations show a non-thermal MeV tail emitted by a non-thermal electron population generated near X-points of the reconnection layer. The results are consistent with the typical hard state of accreting black holes. In particular, we find that the spectrum of Cygnus X-1 is well explained by electron-ion reconnection with σ ∼ 3.

     
    more » « less
  3. Abstract

    The most common form of magnetar activity is short X-ray bursts, with durations from milliseconds to seconds, and luminosities ranging from 1036–1043erg s−1. Recently, an X-ray burst from the galactic magnetar SGR 1935+2154 was detected to be coincident with two fast radio burst (FRB) like events from the same source, providing evidence that FRBs may be linked to magnetar bursts. Using fully 3D force-free electrodynamics simulations, we show that such magnetar bursts may be produced by Alfvén waves launched from localized magnetar quakes: a wave packet propagates to the outer magnetosphere, becomes nonlinear, and escapes the magnetosphere, forming an ultra-relativistic ejecta. The ejecta pushes open the magnetospheric field lines, creating current sheets behind it. Magnetic reconnection can happen at these current sheets, leading to plasma energization and X-ray emission. The angular size of the ejecta can be compact, ≲1 sr if the quake launching region is small, ≲0.01 sr at the stellar surface. We discuss implications for the FRBs and the coincident X-ray burst from SGR 1935+2154.

     
    more » « less
  4. Abstract

    We examine the possibility that fast radio bursts (FRBs) are emitted inside the magnetosphere of a magnetar. On its way out, the radio wave must interact with a low-densitye±plasma in the outer magnetosphere at radiiR= 109–1010cm. In this region, the magnetospheric particles have a huge cross section for scattering the wave. As a result, the wave strongly interacts with the magnetosphere and compresses it, depositing the FRB energy into the compressed field and the scattered radiation. The scattered spectrum extends to theγ-ray band and triggerse±avalanche, further boosting the opacity. These processes choke FRBs, disfavoring scenarios with a radio source confined atR≪ 1010cm. Observed FRBs can be emitted by magnetospheric flare ejecta transporting energy to large radii.

     
    more » « less
  5. ABSTRACT

    Magnetars are the most promising progenitors of fast radio bursts (FRBs). Strong radio waves propagating through the magnetar wind are subject to non-linear effects, including modulation/filamentation instabilities. We derive the dispersion relation for modulations of strong waves propagating in magnetically dominated pair plasmas focusing on dimensionless strength parameters a0 ≲ 1, and discuss implications for FRBs. As an effect of the instability, the FRB-radiation intensity develops sheets perpendicular to the direction of the wind magnetic field. When the FRB front expands outside the radius where the instability ends, the radiation sheets are scattered due to diffraction. The FRB-scattering time-scale depends on the properties of the magnetar wind. In a cold wind, the typical scattering time-scale is τsc ∼  $\mu$s–ms at the frequency $\nu \sim 1\, {\rm GHz}$. The scattering time-scale increases at low frequencies, with the scaling τsc ∝ ν−2. The frequency-dependent broadening of the brightest pulse of FRB 181112 is consistent with this scaling. From the scattering time-scale of the pulse, one can estimate that the wind Lorentz factor is larger than a few tens. In a warm wind, the scattering time-scale can approach $\tau _{\rm sc}\sim \, {\rm ns}$. Then scattering produces a frequency modulation of the observed intensity with a large bandwidth, $\Delta \nu \sim 1/\tau _{\rm sc}\gtrsim 100\, {\rm MHz}$. Broad-band frequency modulations observed in FRBs could be due to scattering in a warm magnetar wind.

     
    more » « less
  6. Abstract Instabilities in a neutron star can generate Alfvén waves in its magnetosphere. Propagation along the curved magnetic field lines strongly shears the wave, boosting its electric current j A . We derive an analytic expression for the evolution of the wavevector k and the growth of j A . In the strongly sheared regime, j A may exceed the maximum current j 0 that can be supported by the background e ± plasma. We investigate these charge-starved waves, first using a simplified two-fluid analytic model, then with first-principles kinetic simulations. We find that the Alfvén wave is able to propagate successfully even when κ ≡ j A / j 0 ≫ 1. It sustains j A by compressing and advecting the plasma along the magnetic field lines with an increasing Lorentz factor, γ ≳ κ 1/2 . The simulations show how plasma instabilities lead to gradual dissipation of the wave energy. Our results suggest that an extremely high charge-starvation parameter κ ≳ 10 4 may be required in order for this mechanism to power the observed fast radio bursts (FRBs) from SGR 1935+2154. However, cosmological FRBs with much higher luminosities are unlikely to be a result of charge-starvation. 
    more » « less