skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing Code Understanding for Impact Analysis by Combining Transformers and Program Dependence Graphs
Impact analysis (IA) is a critical software maintenance task that identifies the effects of a given set of code changes on a larger software project with the intention of avoiding potential adverse effects. IA is a cognitively challenging task that involves reasoning about the abstract relationships between various code constructs. Given its difficulty, researchers have worked to automate IA with approaches that primarily use coupling metrics as a measure of the connectedness of different parts of a software project. Many of these coupling metrics rely on static, dynamic, or evolutionary information and are based on heuristics that tend to be brittle, require expensive execution analysis, or large histories of co-changes to accurately estimate impact sets. In this paper, we introduce a novel IA approach, called ATHENA, that combines a software system's dependence graph information with a conceptual coupling approach that uses advances in deep representation learning for code without the need for change histories and execution information. Previous IA benchmarks are small, containing less than ten software projects, and suffer from tangled commits, making it difficult to measure accurate results. Therefore, we constructed a large-scale IA benchmark, from 25 open-source software projects, that utilizes fine-grained commit information from bug fixes. On this new benchmark, our best performing approach configuration achieves an mRR, mAP, and HIT@10 score of 60.32%, 35.19%, and 81.48%, respectively. Through various ablations and qualitative analyses, we show that ATHENA's novel combination of program dependence graphs and conceptual coupling information leads it to outperform a simpler baseline by 10.34%, 9.55%, and 11.68% with statistical significance.  more » « less
Award ID(s):
2423813 2414176
PAR ID:
10554377
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Software Engineering
Volume:
1
Issue:
FSE
ISSN:
2994-970X
Page Range / eLocation ID:
972 to 995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Comments are an integral part of software development; they are natural language descriptions associated with source code elements. Understanding explicit associations can be useful in improving code comprehensibility and maintaining the consistency between code and comments. As an initial step towards this larger goal, we address the task of associating entities in Javadoc comments with elements in Java source code. We propose an approach for automatically extracting supervised data using revision histories of open source projects and present a manually annotated evaluation dataset for this task. We develop a binary classifier and a sequence labeling model by crafting a rich feature set which encompasses various aspects of code, comments, and the relationships between them. Experiments show that our systems outperform several baselines learning from the proposed supervision. 
    more » « less
  2. Software metrics capture information about software development processes and products. These metrics support decision-making, e.g., in team management or dependency selection. However, existing metrics tools measure only a snapshot of a software project. Little attention has been given to enabling engineers to reason about metric trends over time—longitudinal metrics that give insight about process, not just product. In thiswork,we present PRIME (PRocess MEtrics), a tool to compute and visualize process metrics. The currently-supported metrics include productivity, issue density, issue spoilage, and bus factor.We illustrate the value of longitudinal data and conclude with a research agenda. The tool’s demo video can be watched at https://bit.ly/ase2022-prime. Source code can be found at https://github.com/SoftwareSystemsLaboratory/prime. 
    more » « less
  3. null (Ed.)
    Providing students with authentic software development experiences is essential to preparing them for careers in industry. To that end, many undergraduate courses include a team-based software development experience in which each team works on a different software project. This raises significant challenges for assessing student work and measuring the impact of pedagogical interventions: What do we measure and how, when each team is working on a different project? To address this question, we present a collection of metrics developed using the Goal-Question-Metric framework from the empirical software engineering literature, and an empirical study in which we applied those metrics to assess 23 team software projects involving 94 students at three institutions. Study results suggest that these metrics, which gauge commit, issue, and overall product quality, are sensitive to differences in the quality of teams' processes and products. This work contributes a new metric-based approach to evaluating key aspects of software development processes and products in a wide variety of computing courses. 
    more » « less
  4. Open source software is commonly portrayed as a meritocracy, where decisions are based solely on their technical merit. However, literature on open source suggests a complex social structure underlying the meritocracy. Social work environments such as GitHub make the relationships between users and between users and work artifacts transparent. This transparency enables developers to better use information such as technical value and social connections when making work decisions. We present a study on open source software contribution in GitHub that focuses on the task of evaluating pull requests, which are one of the primary methods for contributing code in GitHub. We analyzed the association of various technical and social measures with the likelihood of contribution acceptance. We found that project managers made use of information signaling both good technical contribution practices for a pull request and the strength of the social connection between the submitter and project manager when evaluating pull requests. Pull requests with many comments were much less likely to be accepted, moderated by the submitter's prior interaction in the project. Well-established projects were more conservative in accepting pull requests. These findings provide evidence that developers use both technical and social information when evaluating potential contributions to open source software projects 
    more » « less
  5. null (Ed.)
    Bug localization plays an important role in software quality control. Many supervised machine learning models have been developed based on historical bug-fix information. Despite being successful, these methods often require sufficient historical data (i.e., labels), which is not always available especially for newly developed software projects. In response, cross-project bug localization techniques have recently emerged whose key idea is to transferring knowledge from label-rich source project to locate bugs in the target project. However, a major limitation of these existing techniques lies in that they fail to capture the specificity of each individual project, and are thus prone to negative transfer.To address this issue, we propose an adversarial transfer learning bug localization approach, focusing on only transferring the common characteristics (i.e., public information) across projects. Specifically, our approach (CooBa) learns the indicative public information from cross-project bug reports through a shared encoder, and extracts the private information from code files by an individual feature extractor for each project. CooBa further incorporates adversarial learning mechanism to ensure that public information shared between multiple projects could be effectively extracted. Extensive experiments on four large-scale real-world data sets demonstrate that the proposed CooBa significantly outperforms the state of the art techniques. 
    more » « less