skip to main content

Title: CooBa: Cross-project Bug Localization via Adversarial Transfer Learning

Bug localization plays an important role in software quality control. Many supervised machine learning models have been developed based on historical bug-fix information. Despite being successful, these methods often require sufficient historical data (i.e., labels), which is not always available especially for newly developed software projects. In response, cross-project bug localization techniques have recently emerged whose key idea is to transferring knowledge from label-rich source project to locate bugs in the target project. However, a major limitation of these existing techniques lies in that they fail to capture the specificity of each individual project, and are thus prone to negative transfer.To address this issue, we propose an adversarial transfer learning bug localization approach, focusing on only transferring the common characteristics (i.e., public information) across projects. Specifically, our approach (CooBa) learns the indicative public information from cross-project bug reports through a shared encoder, and extracts the private information from code files by an individual feature extractor for each project. CooBa further incorporates adversarial learning mechanism to ensure that public information shared between multiple projects could be effectively extracted. Extensive experiments on four large-scale real-world data sets demonstrate that the proposed CooBa significantly outperforms the state of the art techniques.

Authors:
; ; ;
Award ID(s):
1939725 1947135 1715385
Publication Date:
NSF-PAR ID:
10200359
Journal Name:
IJCAI
Page Range or eLocation-ID:
3565 to 3571
Sponsoring Org:
National Science Foundation
More Like this
  1. In June 2020, at the annual conference of the American Society for Engineering Education (ASEE), which was held entirely online due to the impacts of COVID-19 (SARS-CoV-2), engineering education researchers and social justice scholars diagnosed the spread of two diseases in the United States: COVID-19 and racism. During a virtual workshop (T614A) titled, “Using Power, Privilege, and Intersectionality as Lenses to Understand our Experiences and Begin to Disrupt and Dismantle Oppressive Structures Within Academia,” Drs. Nadia Kellam, Vanessa Svihla, Donna Riley, Alice Pawley, Kelly Cross, Susannah Davis, and Jay Pembridge presented what we might call a pathological analysis of institutionalized racism and various other “isms.” In order to address the intersecting impacts of this double pandemic, they prescribed counter practices and protocols of anti-racism, and strategies against other oppressive “isms” in academia. At the beginning of the virtual workshop, the presenters were pleasantly surprised to see that they had around a hundred attendees. Did the online format of the ASEE conference afford broader exposure of the workshop? Did recent uprising of Black Lives Matter (BLM) protests across the country, and internationally, generate broader interest in their topic? Whatever the case, at a time when an in-person conference could not bemore »convened without compromising public health safety, ASEE’s virtual conference platform, furnished by Pathable and supplemented by Zoom, made possible the broader social impacts of Dr. Svihla’s land acknowledgement of the unceded Indigenous lands from which she was presenting. Svihla attempted to go beyond a hollow gesture by including a hyperlink in her slides to a COVID-19 relief fund for the Navajo Nation, and encouraged attendees to make a donation as they copied and pasted the link in the Zoom Chat. Dr. Cross’s statement that you are either a racist or an anti-racist at this point also promised broader social impacts in the context of the virtual workshop. You could feel the intensity of the BLM social movements and the broader political climate in the tone of the presenters’ voices. The mobilizing masses on the streets resonated with a cutting-edge of social justice research and education at the ASEE virtual conference. COVID-19 has both exacerbated and made more obvious the unevenness and inequities in our educational practices, processes, and infrastructures. This paper is an extension of a broader collaborative research project that accounts for how an exceptional group of engineering educators have taken this opportunity to socially broaden their curricula to include not just public health matters, but also contemporary political and social movements. Engineering educators for change and advocates for social justice quickly recognized the affordances of diverse forms of digital technologies, and the possibilities of broadening their impact through educational practices and infrastructures of inclusion, openness, and accessibility. They are makers of what Gary Downy calls “scalable scholarship”—projects in support of marginalized epistemologies that can be scaled up from ideation to practice in ways that unsettle and displace the dominant epistemological paradigm of engineering education.[1] This paper is a work in progress. It marks the beginning of a much lengthier project that documents the key positionality of engineering educators for change, and how they are socially situated in places where they can connect social movements with industrial transitions, and participate in the production of “undone sciences” that address “a structured absence that emerges from relations of inequality.”[2] In this paper, we offer a brief glimpse into ethnographic data we collected virtually through interviews, participant observation, and digital archiving from March 2019 to August 2019, during the initial impacts of COVID-19 in the United States. The collaborative research that undergirds this paper is ongoing, and what is presented here is a rough and early articulation of ideas and research findings that have begun to emerge through our engagement with engineering educators for change. This paper begins by introducing an image concept that will guide our analysis of how, in this historical moment, forms of social and racial justice are finding their way into the practices of engineering educators through slight changes in pedagogical techniques in response the debilitating impacts of the pandemic. Conceptually, we are interested in how small and subtle changes in learning conditions can socially broaden the impact of engineering educators for change. After introducing the image concept that guides this work, we will briefly discuss methodology and offer background information about the project. Next, we discuss literature that revolves around the question, what is engineering education for? Finally, we introduce the notion of situating engineering education and give readers a brief glimpse into our ethnographic data. The conclusion will indicate future directions for writing, research, and intervention.« less
  2. As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different raciallymore »diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts.« less
  3. Searching for parking has been a problem faced by many drivers, especially in urban areas. With an increasing public demand for parking information and services, as well as the proliferation of advanced smartphones, a range of smartphone-based parking management services began to emerge. Funded by the National Science Foundation, our research aims to explore the potential of smartphone-based parking management services as a solution to parking problems, to deepen our understandings of travelers’ parking behaviors, and to further advance the analytical foundations and methodologies for modeling and assessing parking solutions. This paper summarizes progress and results from our research projects on smartphone-based parking management, including parking availability information prediction, parking searching strategy, the development of a mobile parking application, and our next steps to learn and discover new knowledge from its deployment. To predict future parking occupancy, we proposed a practical framework that integrates machine-learning techniques with a model-based core approach that explicitly models the stochastic parking process. The framework is able to predict future parking occupancy from historical occupancy data alone, and can handle complex arrival and departure patterns in real-world case studies, including special event. With the predicted probabilistic availability information, a cost-minimizing parking searching strategy is developed.more »The parking searching problem for an individual user is a stochastic Markov decision process and is formalized as a dynamic programming problem. The cost-minimizing parking searching strategy is solved by value iteration. Our simulated experiments showed that cost-minimizing strategy has the lowest expected cost but tends to direct a user to visit more parking facilities compared with two greedy strategies. Currently, we are working on implementing the predictive framework and the searching algorithm in a mobile phone application. We are working closely with Arizona State University (ASU) Parking and Transit Services to implement a three-stage pilot deployment of the prototype application around the ASU main campus. In the first stage, our application will provide real-time information and we will incorporate availability prediction and searching guidance in the second and third stages. Once the mobile application is deployed, it will provide unique opportunities to collect data on parking search behaviors, discover emerging scenarios of smartphone-based parking management services, and assess the impacts of such systems.« less
  4. Searching for parking has been a problem faced by many drivers, especially in urban areas. With an increasing public demand for parking information and services, as well as the proliferation of advanced smartphones, a range of smartphone-based parking management services began to emerge. Funded by the National Science Foundation, our research aims to explore the potential of smartphone-based parking management services as a solution to parking problems, to deepen our understandings of travelers’ parking behaviors, and to further advance the analytical foundations and methodologies for modeling and assessing parking solutions. This paper summarizes progress and results from our research projects on smartphone-based parking management, including parking availability information prediction, parking searching strategy, the development of a mobile parking application, and our next steps to learn and discover new knowledge from its deployment. To predict future parking occupancy, we proposed a practical framework that integrates machine-learning techniques with a model-based core approach that explicitly models the stochastic parking process. The framework is able to predict future parking occupancy from historical occupancy data alone, and can handle complex arrival and departure patterns in real-world case studies, including special event. With the predicted probabilistic availability information, a cost-minimizing parking searching strategy is developed.more »The parking searching problem for an individual user is a stochastic Markov decision process and is formalized as a dynamic programming problem. The cost-minimizing parking searching strategy is solved by value iteration. Our simulated experiments showed that cost-minimizing strategy has the lowest expected cost but tends to direct a user to visit more parking facilities compared with two greedy strategies. Currently, we are working on implementing the predictive framework and the searching algorithm in a mobile phone application. We are working closely with Arizona State University (ASU) Parking and Transit Services to implement a three-stage pilot deployment of the prototype application around the ASU main campus. In the first stage, our application will provide real-time information and we will incorporate availability prediction and searching guidance in the second and third stages. Once the mobile application is deployed, it will provide unique opportunities to collect data on parking search behaviors, discover emerging scenarios of smartphone-based parking management services, and assess the impacts of such systems.« less
  5. 1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to a more-efficient, shared-spectrum approach in some bands of the radio frequency spectrum. A STEM workforce that understands the radio frequency spectrum and applications that use the spectrum is needed to further increase spectrum efficiency and cost-effectiveness of wireless systems over the next several decades to meet anticipated and unanticipated increases in wireless data capacity. 2. Relevant background including literature search examples if appropriate CISCO Systems’ annual survey indicates continued strong growth in demand for wireless data capacity. Meanwhile, undergraduate electrical and computer engineering courses in communication systems, electromagnetics, and networks tend to emphasize mathematical and theoretical fundamentals and higher-layer protocols, withmore »less focus on fundamental concepts that are more specific to radio frequency wireless systems, including the physical and media access control layers of wireless communication systems and networks. An efficient way is needed to introduce basic RF system and spectrum concepts to undergraduate engineering students in courses such as those mentioned above who are unable to, or had not planned to take a full course in radio frequency / microwave engineering or wireless systems and networks. We have developed a series of interactive online modules that introduce concepts fundamental to wireless communications, the radio frequency spectrum, and spectrum sharing, and seek to present these concepts in context. The modules include interactive, JavaScript-based simulation exercises intended to reinforce the concepts that are presented in the modules through narrated slide presentations, text, and external links. Additional modules in development will introduce advanced undergraduate and graduate students and STEM professionals to configuration and programming of adaptive frequency-agile radios and spectrum management systems that can operate efficiently in congested radio frequency environments. Simulation exercises developed for the advanced modules allow both manual and automatic control of simulated radio links in timed, game-like simulations, and some exercises will enable students to select from among multiple pre-coded controller strategies and optionally edit the code before running the timed simulation. Additionally, we have developed infrastructure for running remote laboratory experiments that can also be embedded within the online modules, including a web-based user interface, an experiment management framework, and software defined radio (SDR) application software that runs in a wireless testbed initially developed for research. Although these experiments rely on limited hardware resources and introduce additional logistical considerations, they provide additional realism that may further challenge and motivate students. 3. Description of any assessment methods used to evaluate the effectiveness of the contribution, Each set of modules is preceded and followed by a survey. Each individual module is preceded by a quiz and followed by another quiz, with pre- and post-quiz questions drawn from the same pool. The pre-surveys allow students to opt in or out of having their survey and quiz results used anonymously in research. 4. Statement of results. The initial modules have been and are being used by three groups of students: (1) students in an undergraduate Introduction to Communication Systems course; (2) an interdisciplinary group of engineering students, including computer science students, who are participating in related undergraduate research project; and (3) students in a graduate-level communications course that includes both electrical and computer engineers. Analysis of results from the first group of students showed statistically significant increases from pre-quiz to post-quiz for each of four modules on fundamental wireless communication concepts. Results for the other students have not yet been analyzed, but also appear to show substantial pre-quiz to post-quiz increases in mean scores.« less