Abstract Robust estimation is an important problem in statistics which aims at providing a reasonable estimator when the data-generating distribution lies within an appropriately defined ball around an uncontaminated distribution. Although minimax rates of estimation have been established in recent years, many existing robust estimators with provably optimal convergence rates are also computationally intractable. In this paper, we study several estimation problems under a Wasserstein contamination model and present computationally tractable estimators motivated by generative adversarial networks (GANs). Specifically, we analyze the properties of Wasserstein GAN-based estimators for location estimation, covariance matrix estimation and linear regression and show that our proposed estimators are minimax optimal in many scenarios. Finally, we present numerical results which demonstrate the effectiveness of our estimators.
more »
« less
High‐Dimensional Covariance Estimation From a Small Number of Samples
Abstract We synthesize knowledge from numerical weather prediction, inverse theory, and statistics to address the problem of estimating a high‐dimensional covariance matrix from a small number of samples. This problem is fundamental in statistics, machine learning/artificial intelligence, and in modern Earth science. We create several new adaptive methods for high‐dimensional covariance estimation, but one method, which we call Noise‐Informed Covariance Estimation (NICE), stands out because it has three important properties: (a) NICE is conceptually simple and computationally efficient; (b) NICE guarantees symmetric positive semi‐definite covariance estimates; and (c) NICE is largely tuning‐free. We illustrate the use of NICE on a large set of Earth science–inspired numerical examples, including cycling data assimilation, inversion of geophysical field data, and training of feed‐forward neural networks with time‐averaged data from a chaotic dynamical system. Our theory, heuristics and numerical tests suggest that NICE may indeed be a viable option for high‐dimensional covariance estimation in many Earth science problems.
more »
« less
- Award ID(s):
- 2202991
- PAR ID:
- 10554436
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 16
- Issue:
- 9
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spatial statistics often involves Cholesky decomposition of covariance matrices. To ensure scalability to high dimensions, several recent approximations have assumed a sparse Cholesky factor of the precision matrix. We propose a hierarchical Vecchia approximation, whose conditional-independence assumptions imply sparsity in the Cholesky factors of both the precision and the covariance matrix. This remarkable property is crucial for applications to high-dimensional spatiotemporal filtering. We present a fast and simple algorithm to compute our hierarchical Vecchia approximation, and we provide extensions to nonlinear data assimilation with non-Gaussian data based on the Laplace approximation. In several numerical comparisons, including a filtering analysis of satellite data, our methods strongly outperformed alternative approaches.more » « less
-
With the advent of massive data sets much of the computational science and engineering community has moved toward data-intensive approaches in regression and classification. However, these present significant challenges due to increasing size, complexity and dimensionality of the problems. In particular, covariance matrices in many cases are numerically unstable and linear algebra shows that often such matrices cannot be inverted accurately on a finite precision computer. A common ad hoc approach to stabilizing a matrix is application of a so-called nugget. However, this can change the model and introduce error to the original solution. It is well known from numerical analysis that ill-conditioned matrices cannot be accurately inverted. In this paper we develop a multilevel computational method that scales well with the number of observations and dimensions. A multilevel basis is constructed adapted to a kD-tree partitioning of the observations. Numerically unstable covariance matrices with large condition numbers can be transformed into well conditioned multilevel ones without compromising accuracy. Moreover, it is shown that the multilevel prediction exactly solves the Best Linear Unbiased Predictor (BLUP) and Generalized Least Squares (GLS) model, but is numerically stable. The multilevel method is tested on numerically unstable problems of up to 25 dimensions. Numerical results show speedups of up to 42,050 times for solving the BLUP problem, but with the same accuracy as the traditional iterative approach. For very ill-conditioned cases the speedup is infinite. In addition, decay estimates of the multilevel covariance matrices are derived based on high dimensional interpolation techniques from the field of numerical analysis. This work lies at the intersection of statistics, uncertainty quantification, high performance computing and computational applied mathematics.more » « less
-
In this article, we exploit the spiked covariance structure of the clutter plus noise covariance matrix for radar signal processing. Using state-of-the-art techniques high dimensional statistics, we propose a nonlinear shrinkage-based rotation invariant spiked covariance ma- trix estimator. We state the convergence of the estimated spiked eigen- values. We use a dataset generated from the high-fidelity, site-specific physics-based radar simulation software RFView to compare the proposed algorithm against the existing rank constrained maximum likelihood (RCML)-expected likelihood (EL) covariance estimationmore » « less
-
Estimation of Markov Random Field and covariance models from high-dimensional data represents a canonical problem that has received a lot of attention in the literature. A key assumption, widely employed, is that of sparsity of the underlying model. In this paper, we study the problem of estimating such models exhibiting a more intricate structure comprising simultaneously of sparse, structured sparse and dense components. Such structures naturally arise in several scientific fields, including molecular biology, finance and political science. We introduce a general framework based on a novel structured norm that enables us to estimate such complex structures from high-dimensional data. The resulting optimization problem is convex and we introduce a linearized multi-block alternating direction method of multipliers (ADMM) algorithm to solve it efficiently. We illustrate the superior performance of the proposed framework on a number of synthetic data sets generated from both random and structured networks. Further, we apply the method to a number of real data sets and discuss the results.more » « less
An official website of the United States government
