Variational quantum algorithms rely on the optimization of parameterized quantum circuits in noisy settings. The commonly used back-propagation procedure in classical machine learning is not directly applicable in this setting due to the collapse of quantum states after measurements. Thus, gradient estimations constitute a significant overhead in a gradient-based optimization of such quantum circuits. This paper introduces a random coordinate descent algorithm as a practical and easy-to-implement alternative to the full gradient descent algorithm. This algorithm only requires one partial derivative at each iteration. Motivated by the behavior of measurement noise in the practical optimization of parameterized quantum circuits, this paper presents an optimization problem setting that is amenable to analysis. Under this setting, the random coordinate descent algorithm exhibits the same level of stochastic stability as the full gradient approach, making it as resilient to noise. The complexity of the random coordinate descent method is generally no worse than that of the gradient descent and can be much better for various quantum optimization problems with anisotropic Lipschitz constants. Theoretical analysis and extensive numerical experiments validate our findings.
This content will become publicly available on July 1, 2025
In this work, drawing inspiration from the type of noise present in real hardware, we study the output distribution of random quantum circuits under practical nonunital noise sources with constant noise rates. We show that even in the presence of unital sources such as the depolarizing channel, the distribution, under the combined noise channel, never resembles a maximally entropic distribution at any depth. To show this, we prove that the output distribution of such circuits never anticoncentrates—meaning that it is never too “flat”—regardless of the depth of the circuit. This is in stark contrast to the behavior of noiseless random quantum circuits or those with only unital noise, both of which anticoncentrate at sufficiently large depths. As a consequence, our results shows that the complexity of random-circuit sampling under realistic noise is still an open question, since anticoncentration is a critical property exploited by both state-of-the-art classical hardness and easiness results.
- Award ID(s):
- 2044923
- PAR ID:
- 10554452
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- PRX Quantum
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2691-3399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Published by the American Physical Society 2024 -
Estimating a quantum phase is a necessary task in a wide range of fields of quantum science. To accomplish this task, two well-known methods have been developed in distinct contexts, namely, Ramsey interferometry (RI) in atomic and molecular physics and quantum phase estimation (QPE) in quantum computing. We demonstrate that these canonical examples are instances of a larger class of phase estimation protocols, which we call reductive quantum phase estimation (RQPE) circuits. Here, we present an explicit algorithm that allows one to create an RQPE circuit. This circuit distinguishes an arbitrary set of phases with a smaller number of qubits and unitary applications, thereby solving a general class of quantum hypothesis testing to which RI and QPE belong. We further demonstrate a tradeoff between measurement precision and phase distinguishability, which allows one to tune the circuit to be optimal for a specific application.
Published by the American Physical Society 2024 -
By applying a microwave drive to a specially designed Josephson circuit, we have realized a double-well model system: a Kerr oscillator submitted to a squeezing force. We have observed, for the first time, the spectroscopic fingerprint of a quantum double-well Hamiltonian when its barrier height is increased: a pairwise level kissing (coalescence) corresponding to the exponential reduction of tunnel splitting in the excited states as they sink under the barrier. The discrete levels in the wells also manifest themselves in the activation time across the barrier which, instead of increasing smoothly as a function of the barrier height, presents steps each time a pair of excited states is captured by the wells. This experiment illustrates the quantum regime of Arrhenius’s law, whose observation is made possible here by the unprecedented combination of low dissipation, time-resolved state control, 98.5% quantum nondemolition single shot measurement fidelity, and complete microwave control over all Hamiltonian parameters in the quantum regime. Direct applications to quantum computation and simulation are discussed.
Published by the American Physical Society 2024 -
We propose and analyze deterministic protocols to generate qudit photonic graph states from quantum emitters. We show that our approach can be applied to generate any qudit graph state and we exemplify it by constructing protocols to generate one- and two-dimensional qudit cluster states, absolutely maximally entangled states, and logical states of quantum error-correcting codes. Some of these protocols make use of time-delayed feedback, while others do not. The only additional resource requirement compared to the qubit case is the ability to control multilevel emitters. These results significantly broaden the range of multiphoton entangled states that can be produced deterministically from quantum emitters.
Published by the American Physical Society 2024 -
Motivated by the great success of classical generative models in machine learning, enthusiastic exploration of their quantum version has recently started. To depart on this journey, it is important to develop a relevant metric to evaluate the quality of quantum generative models; in the classical case, one such example is the (classical) inception score (cIS). In this paper, as a natural extension of cIS, we propose the quantum inception score (qIS) for quantum generators. Importantly, qIS relates the quality to the Holevo information of the quantum channel that classifies a given dataset. In this context, we show several properties of qIS. First, qIS is greater than or equal to the corresponding cIS, which is defined through projection measurements on the system output. Second, the difference between qIS and cIS arises from the presence of quantum coherence, as characterized by the resource theory of asymmetry. Third, when a set of entangled generators is prepared, there exists a classifying process leading to the further enhancement of qIS. Fourth, we harness the quantum fluctuation theorem to characterize the physical limitation of qIS. Finally, we apply qIS to assess the quality of the one-dimensional spin chain model as a quantum generative model, with the quantum convolutional neural network as a quantum classifier, for the phase classification problem in the quantum many-body physics.
Published by the American Physical Society 2024