Higher order random walks (HD-walks) on high dimensional expanders (HDX) have seen an incredible amount of study and application since their introduction by Kaufman and Mass (ITCS 2016), yet their broader combinatorial and spectral properties remain poorly understood. We develop a combinatorial characterization of the spectral structure of HD-walks on two-sided local-spectral expanders (Dinur and Kaufman FOCS 2017), which offer a broad generalization of the well-studied Johnson and Grassmann graphs. Our characterization, which shows that the spectra of HD-walks lie tightly concentrated in a few combinatorially structured strips, leads to novel structural theorems such as a tight ℓ2-characterization of edge-expansion, as well as to a new understanding of local-to-global graph algorithms on HDX. Towards the latter, we introduce a novel spectral complexity measure called Stripped Threshold Rank, and show how it can replace the (much larger) threshold rank as a parameter controlling the performance of algorithms on structured objects. Combined with a sum-of-squares proof for the former ℓ2-characterization, we give a concrete application of this framework to algorithms for unique games on HD-walks, where in many cases we improve the state of the art (Barak, Raghavendra, and Steurer FOCS 2011, and Arora, Barak, and Steurer JACM 2015) from nearly-exponential to polynomial time (e.g. for sparsifications of Johnson graphs or of slices of the q-ary hypercube). Our characterization of expansion also holds an interesting connection to hardness of approximation, where an ℓ∞-variant for the Grassmann graphs was recently used to resolve the 2-2 Games Conjecture (Khot, Minzer, and Safra FOCS 2018). We give a reduction from a related ℓ∞-variant to our ℓ2-characterization, but it loses factors in the regime of interest for hardness where the gap between ℓ2 and ℓ∞ structure is large. Nevertheless, our results open the door for further work on the use of HDX in hardness of approximation and their general relation to unique games.
more »
« less
Solving Unique Games over Globally Hypercontractive Graphs
We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which are graphs that are not small set expanders but admit a useful and succinct characterization of all small sets that violate the small-set expansion property. This class of graphs includes the Johnson and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and their generalizations via high-dimensional expanders. We show new rounding techniques for higher degree sum-of-squares (SoS) relaxations for worst-case optimization. In particular, our algorithm shows how to round "low-entropy" pseudodistributions, broadly extending the algorithmic framework of [Mitali Bafna et al., 2021]. At a high level, [Mitali Bafna et al., 2021] showed how to round pseudodistributions for problems where there is a "unique" good solution. We extend their framework by exhibiting a rounding for problems where there might be "few good solutions". Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights the importance of graphs that lack such a characterization in the context of PCP reductions for UG.
more »
« less
- Award ID(s):
- 2227876
- PAR ID:
- 10554548
- Editor(s):
- Santhanam, Rahul
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 300
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-331-7
- Page Range / eLocation ID:
- 300-300
- Subject(s) / Keyword(s):
- unique games approximation algorithms Theory of computation → Approximation algorithms analysis Theory of computation → Complexity theory and logic
- Format(s):
- Medium: X Size: 15 pages; 796645 bytes Other: application/pdf
- Size(s):
- 15 pages 796645 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)A recent breakthrough work of Limaye, Srinivasan and Tavenas [Nutan Limaye et al., 2021] proved superpolynomial lower bounds for low-depth arithmetic circuits via a "hardness escalation" approach: they proved lower bounds for low-depth set-multilinear circuits and then lifted the bounds to low-depth general circuits. In this work, we prove superpolynomial lower bounds for low-depth circuits by bypassing the hardness escalation, i.e., the set-multilinearization, step. As set-multilinearization comes with an exponential blow-up in circuit size, our direct proof opens up the possibility of proving an exponential lower bound for low-depth homogeneous circuits by evading a crucial bottleneck. Our bounds hold for the iterated matrix multiplication and the Nisan-Wigderson design polynomials. We also define a subclass of unrestricted depth homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This significantly generalizes the superpolynomial lower bounds for regular formulas [Neeraj Kayal et al., 2014; Hervé Fournier et al., 2015].more » « less
-
Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)Classical network design models, such as the Survivable Network Design problem (SNDP), are (partly) motivated by robustness to faults under the assumption that any subset of edges upto a specific number can fail. We consider non-uniform fault models where the subset of edges that fail can be specified in different ways. Our primary interest is in the flexible graph connectivity model [Adjiashvili, 2013; Adjiashvili et al., 2020; Adjiashvili et al., 2022; Boyd et al., 2023], in which the edge set is partitioned into safe and unsafe edges. Given parameters p,q ≥ 1, the goal is to find a cheap subgraph that remains p-connected even after the failure of q unsafe edges. We also discuss the bulk-robust model [Adjiashvili et al., 2015; Adjiashvili, 2015] and the relative survivable network design model [Dinitz et al., 2022]. While SNDP admits a 2-approximation [K. Jain, 2001], the approximability of problems in these more complex models is much less understood even in special cases. We make two contributions. Our first set of results are in the flexible graph connectivity model. Motivated by a conjecture that a constant factor approximation is feasible when p and q are fixed, we consider two special cases. For the s-t case we obtain an approximation ratio that depends only on p,q whenever p+q > pq/2 which includes (p,2) and (2,q) for all p,q ≥ 1. For the global connectivity case we obtain an O(q) approximation for (2,q), and an O(p) approximation for (p,2) and (p,3) for any p ≥ 1, and for (p,4) when p is even. These are based on an augmentation framework and decomposing the families of cuts that need to be covered into a small number of uncrossable families. Our second result is a poly-logarithmic approximation for a generalization of the bulk-robust model when the "width" of the given instance (the maximum number of edges that can fail in any particular scenario) is fixed. Via this, we derive corresponding approximations for the flexible graph connectivity model and the relative survivable network design model. We utilize a recent framework due to Chen et al. [Chen et al., 2022] that was designed for handling group connectivity.more » « less
-
Braverman, Mark (Ed.)For an abelian group H acting on the set [𝓁], an (H,𝓁)-lift of a graph G₀ is a graph obtained by replacing each vertex by 𝓁 copies, and each edge by a matching corresponding to the action of an element of H. Expanding graphs obtained via abelian lifts, form a key ingredient in the recent breakthrough constructions of quantum LDPC codes, (implicitly) in the fiber bundle codes by Hastings, Haah and O'Donnell [STOC 2021] achieving distance Ω̃(N^{3/5}), and in those by Panteleev and Kalachev [IEEE Trans. Inf. Theory 2021] of distance Ω(N/log(N)). However, both these constructions are non-explicit. In particular, the latter relies on a randomized construction of expander graphs via abelian lifts by Agarwal et al. [SIAM J. Discrete Math 2019]. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group H ⩽ Sym(𝓁), constant degree d ≥ 3 and ε > 0, we construct explicit d-regular expander graphs G obtained from an (H,𝓁)-lift of a (suitable) base n-vertex expander G₀ with the following parameters: ii) λ(G) ≤ 2√{d-1} + ε, for any lift size 𝓁 ≤ 2^{n^{δ}} where δ = δ(d,ε), iii) λ(G) ≤ ε ⋅ d, for any lift size 𝓁 ≤ 2^{n^{δ₀}} for a fixed δ₀ > 0, when d ≥ d₀(ε), or iv) λ(G) ≤ Õ(√d), for lift size "exactly" 𝓁 = 2^{Θ(n)}. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items (i) and (ii) above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for 2-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing" depth-first search traversals. Result (iii) is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion.more » « less
-
null (Ed.)We present an $$\tilde O(m+n^{1.5})$$-time randomized algorithm for maximum cardinality bipartite matching and related problems (e.g. transshipment, negative-weight shortest paths, and optimal transport) on $$m$$-edge, $$n$$-node graphs. For maximum cardinality bipartite matching on moderately dense graphs, i.e. $$m = \Omega(n^{1.5})$$, our algorithm runs in time nearly linear in the input size and constitutes the first improvement over the classic $$O(m\sqrt{n})$$-time [Dinic 1970; Hopcroft-Karp 1971; Karzanov 1973] and $$\tilde O(n^\omega)$$-time algorithms [Ibarra-Moran 1981] (where currently $$\omega\approx 2.373$$). On sparser graphs, i.e. when $$m = n^{9/8 + \delta}$$ for any constant $$\delta>0$$, our result improves upon the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a] which achieve an $$\tilde O(m^{4/3+o(1)})$$ runtime. We obtain these results by combining and advancing recent lines of research in interior point methods (IPMs) and dynamic graph algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-Sidford-Song 2020], providing a general primal-dual IPM framework and new sampling-based techniques for handling infeasibility induced by approximate linear system solvers. Second, we provide a simple sublinear-time algorithm for detecting and sampling high-energy edges in electric flows on expanders and show that when combined with recent advances in dynamic expander decompositions, this yields efficient data structures for maintaining the iterates of both [v.d.Brand~et~al.] and our new IPMs. Combining this general machinery yields a simpler $$\tilde O(n \sqrt{m})$$ time algorithm for matching based on the logarithmic barrier function, and our state-of-the-art $$\tilde O(m+n^{1.5})$$ time algorithm for matching based on the [Lee-Sidford 2014] barrier (as regularized in [v.d.Brand~et~al.]).more » « less
An official website of the United States government

