In this paper, we introduce a new, spectral notion of approximation between directed graphs, which we call singular value (SV) approximation. SV-approximation is stronger than previous notions of spectral approximation considered in the literature, including spectral approximation of Laplacians for undirected graphs [ST04], standard approximation for directed graphs [CKP + 17], and unit-circle (UC) approximation for directed graphs [AKM + 20]. Further, SV approximation enjoys several useful properties not possessed by previous notions of approximation, e.g., it is preserved under products of randomwalk matrices and bounded matrices. We provide a nearly linear-time algorithm for SV-sparsifying (and hence UC-sparsifying) Eulerian directed graphs, as well as ℓ-step random walks on such graphs, for any ℓ≤poly(n). Combined with the Eulerian scaling algorithms of [CKK + 18], given an arbitrary (not necessarily Eulerian) directed graph and a set S of vertices, we can approximate the stationary probability mass of the (S,Sc) cut in an ℓ-step random walk to within a multiplicative error of 1/polylog(n) and an additive error of 1/poly(n) in nearly linear time. As a starting point for these results, we provide a simple black-box reduction from SV-sparsifying Eulerian directed graphs to SV-sparsifying undirected graphs; such a directed-to-undirected reduction was not known for previous notions of spectral approximation.
more »
« less
High Dimensional Expanders: Eigenstripping, Pseudorandomness, and Unique Games
Higher order random walks (HD-walks) on high dimensional expanders (HDX) have seen an incredible amount of study and application since their introduction by Kaufman and Mass (ITCS 2016), yet their broader combinatorial and spectral properties remain poorly understood. We develop a combinatorial characterization of the spectral structure of HD-walks on two-sided local-spectral expanders (Dinur and Kaufman FOCS 2017), which offer a broad generalization of the well-studied Johnson and Grassmann graphs. Our characterization, which shows that the spectra of HD-walks lie tightly concentrated in a few combinatorially structured strips, leads to novel structural theorems such as a tight ℓ2-characterization of edge-expansion, as well as to a new understanding of local-to-global graph algorithms on HDX.
Towards the latter, we introduce a novel spectral complexity measure called Stripped Threshold Rank, and show how it can replace the (much larger) threshold rank as a parameter controlling the performance of algorithms on structured objects. Combined with a sum-of-squares proof for the former ℓ2-characterization, we give a concrete application of this framework to algorithms for unique games on HD-walks, where in many cases we improve the state of the art (Barak, Raghavendra, and Steurer FOCS 2011, and Arora, Barak, and Steurer JACM 2015) from nearly-exponential to polynomial time (e.g. for sparsifications of Johnson graphs or of slices of the q-ary hypercube). Our characterization of expansion also holds an interesting connection to hardness of approximation, where an ℓ∞-variant for the Grassmann graphs was recently used to resolve the 2-2 Games Conjecture (Khot, Minzer, and Safra FOCS 2018). We give a reduction from a related ℓ∞-variant to our ℓ2-characterization, but it loses factors in the regime of interest for hardness where the gap between ℓ2 and ℓ∞ structure is large. Nevertheless, our results open the door for further work on the use of HDX in hardness of approximation and their general relation to unique games.
more »
« less
- Award ID(s):
- 1953928
- NSF-PAR ID:
- 10320386
- Date Published:
- Journal Name:
- Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The algorithms in this paper (when combined with our FOCS’16 paper) allow one to, in almost linear time, compute a whole bunch of things about random walks in directed graphs. For example, one can compute the stationary distribution, hitting the time between a pair of vertices, commute times between all vertices, escape probabilities, approximations of the mixing time, and more.more » « less
-
For a graph G on n vertices, naively sampling the position of a random walk of at time t requires work Ω(t). We desire local access algorithms supporting positionG(t) queries, which return the position of a random walk from some fixed start vertex s at time t, where the joint distribution of returned positions is 1/ poly(n) close to those of a uniformly random walk in ℓ1 distance. We first give an algorithm for local access to random walks on a given undirected d-regular graph with eO( 1 1−λ √ n) runtime per query, where λ is the second-largest eigenvalue of the random walk matrix of the graph in absolute value. Since random d-regular graphs G(n, d) are expanders with high probability, this gives an eO(√ n) algorithm for a graph drawn from G(n, d) whp, which improves on the naive method for small numbers of queries. We then prove that no algorithm with subconstant error given probe access to an input d-regular graph can have runtime better than Ω(√ n/ log(n)) per query in expectation when the input graph is drawn from G(n, d), obtaining a nearly matching lower bound. We further show an Ω(n1/4) runtime per query lower bound even with an oblivious adversary (i.e. when the query sequence is fixed in advance). We then show that for families of graphs with additional group theoretic structure, dramatically better results can be achieved. We give local access to walks on small-degree abelian Cayley graphs, including cycles and hypercubes, with runtime polylog(n) per query. This also allows for efficient local access to walks on polylog degree expanders. We show that our techniques apply to graphs with high degree by extending or results to graphs constructed using the tensor product (giving fast local access to walks on degree nϵ graphs for any ϵ ∈ (0, 1]) and Cartesian product.more » « less
-
In a recent work, Moshkovitz [FOCS '14] presented a transformation on two-player games called ``fortification'', and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an \emph{analytic reformulation} of Moshkovitz's fortification framework, which was originally cast in combinatorial terms. This reformulation allows us to expand the scope of the fortification method to new settings. First, we show \emph{any} game (not just projection games) can be fortified, and give a simple proof of parallel repetition for general fortified games. Then, we prove parallel repetition and fortification theorems for games with players sharing quantum entanglement, as well as games with more than two players. This gives a new gap amplification method for general games in the quantum and multiplayer settings, two problems which have recently received much attention. An important component of our work is a variant of the fortification transformation, called ``ordered fortification", that preserves the entangled value of a game. The original fortification of Moshkovitz does not in general preserve the entangled value of a game, and this was a barrier to extending the fortification framework to the quantum setting.more » « less
-
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency – given n input points, most kernel-based algorithms need to materialize the full n × n kernel matrix before performing any subsequent computation, thus incurring Ω(n^2) runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain subquadratic time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving lin- ear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recently developed Kernel Density Estimation framework, which (after preprocessing in time subquadratic in n) can return estimates of row/column sums of the kernel matrix. In particular, we de- velop efficient reductions from weighted vertex and weighted edge sampling on kernel graphs, simulating random walks on kernel graphs, and importance sampling on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in sublinear (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsi- fication, where we observe a 9x decrease in the number of kernel evaluations over baselines for LRA and a 41x reduction in the graph size for spectral sparsification.more » « less