skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 13, 2025

Title: Multiparty Communication Complexity of Collision-Finding
We prove an Omega(n^{1−1/k} log k /2^k) lower bound on the k-party number-in-hand communication complexity of collision-finding. This implies a 2^{n^{1−o(1)}} lower bound on the size of tree-like cutting-planes proofs of the bit pigeonhole principle, a compact and natural propositional encoding of the pigeonhole principle, improving on the best previous lower bound of 2^{Omega(sqrt{n})}.  more » « less
Award ID(s):
2006359
PAR ID:
10554727
Author(s) / Creator(s):
;
Publisher / Repository:
arxiv.org
Date Published:
Journal Name:
arXivorg
Volume:
arXiv:2411
Issue:
2411.07400
ISSN:
2331-8422
Page Range / eLocation ID:
1-13
Subject(s) / Keyword(s):
Communication complexity Proof complexity.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)
    We prove several results concerning the communication complexity of a collision-finding problem, each of which has applications to the complexity of cutting-plane proofs, which make inferences based on integer linear inequalities. In particular, we prove an Ω(n^{1-1/k} log k /2^k) lower bound on the k-party number-in-hand communication complexity of collision-finding. This implies a 2^{n^{1-o(1)}} lower bound on the size of tree-like cutting-planes refutations of the bit pigeonhole principle CNFs, which are compact and natural propositional encodings of the negation of the pigeonhole principle, improving on the best previous lower bound of 2^{Ω(√n)}. Using the method of density-restoring partitions, we also extend that previous lower bound to the full range of pigeonhole parameters. Finally, using a refinement of a bottleneck-counting framework of Haken and Cook and Sokolov for DAG-like communication protocols, we give a 2^{Ω(n^{1/4})} lower bound on the size of fully general (not necessarily tree-like) cutting planes refutations of the same bit pigeonhole principle formulas, improving on the best previous lower bound of 2^{Ω(n^{1/8})}. 
    more » « less
  2. We prove several results concerning the communication complexity of a collision-finding problem, each of which has applications to the complexity of cutting-plane proofs, which make inferences based on integer linear inequalities. In particular, we prove an Ω(n^{1−1/k} log k /2^k) lower bound on the k-party number-in-hand communication complexity of collision-finding. This implies a 2^{n^{1−o(1)}} lower bound on the size of tree-like cutting-planes refutations of the bit pigeonhole principle CNFs, which are compact and natural propositional encodings of the negation of the pigeonhole principle, improving on the best previous lower bound of 2^{Ω(√n)}. Using the method of density-restoring partitions, we also extend that previous lower bound to the full range of pigeonhole parameters. Finally, using a refinement of a bottleneck-counting framework of Haken and Cook and Sokolov for DAG-like communication protocols, we give a 2^{Ω(n^{1/4})} lower bound on the size of fully general (not necessarily tree-like) cutting planes refutations of the same bit pigeonhole principle formulas, improving on the best previous lower bound of 2^{Ω(n^{1/8})}. 
    more » « less
  3. Agrawal, Shipra; Roth, Aaron (Ed.)
    We consider the problem of \emph{identifying,} from statistics, a distribution of discrete random variables $$X_1 \ldots,X_n$$ that is a mixture of $$k$$ product distributions. The best previous sample complexity for $$n \in O(k)$$ was $$(1/\zeta)^{O(k^2 \log k)}$$ (under a mild separation assumption parameterized by $$\zeta$$). The best known lower bound was $$\exp(\Omega(k))$$. It is known that $$n\geq 2k-1$$ is necessary and sufficient for identification. We show, for any $$n\geq 2k-1$$, how to achieve sample complexity and run-time complexity $$(1/\zeta)^{O(k)}$$. We also extend the known lower bound of $$e^{\Omega(k)}$$ to match our upper bound across a broad range of $$\zeta$$. Our results are obtained by combining (a) a classic method for robust tensor decomposition, (b) a novel way of bounding the condition number of key matrices called Hadamard extensions, by studying their action only on flattened rank-1 tensors. 
    more » « less
  4. We prove two new results about the inability of low-degree polynomials to uniformly approximate constant-depth circuits, even to slightly-better-than-trivial error. First, we prove a tight Omega~(n^{1/2}) lower bound on the threshold degree of the SURJECTIVITY function on n variables. This matches the best known threshold degree bound for any AC^0 function, previously exhibited by a much more complicated circuit of larger depth (Sherstov, FOCS 2015). Our result also extends to a 2^{Omega~(n^{1/2})} lower bound on the sign-rank of an AC^0 function, improving on the previous best bound of 2^{Omega(n^{2/5})} (Bun and Thaler, ICALP 2016). Second, for any delta>0, we exhibit a function f : {-1,1}^n -> {-1,1} that is computed by a circuit of depth O(1/delta) and is hard to approximate by polynomials in the following sense: f cannot be uniformly approximated to error epsilon=1-2^{-Omega(n^{1-delta})}, even by polynomials of degree n^{1-delta}. Our recent prior work (Bun and Thaler, FOCS 2017) proved a similar lower bound, but which held only for error epsilon=1/3. Our result implies 2^{Omega(n^{1-delta})} lower bounds on the complexity of AC^0 under a variety of basic measures such as discrepancy, margin complexity, and threshold weight. This nearly matches the trivial upper bound of 2^{O(n)} that holds for every function. The previous best lower bound on AC^0 for these measures was 2^{Omega(n^{1/2})} (Sherstov, FOCS 2015). Additional applications in learning theory, communication complexity, and cryptography are described. 
    more » « less
  5. The epsilon-approximate degree, deg_epsilon(f), of a Boolean function f is the least degree of a real-valued polynomial that approximates f pointwise to within epsilon. A sound and complete certificate for approximate degree being at least k is a pair of probability distributions, also known as a dual polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage 1 - epsilon. Our contributions are: - We give a simple, explicit new construction of a dual polynomial for the AND function on n bits, certifying that its epsilon-approximate degree is Omega (sqrt{n log 1/epsilon}). This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-once DNF is Omega(sqrt{n}). It draws a novel connection between the approximate degree of AND and anti-concentration of the Binomial distribution. - We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indistinguishable are also statistically K-wise indistinguishable with at most K^{3/2} * exp (-Omega (k^2/K)) error for all k < K <= n/64. This bound is essentially tight, and implies that any symmetric function f is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-K coalitions with statistical error K^{3/2} * exp (-Omega (deg_{1/3}(f)^2/K)) for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that K be determined in advance, and only worked for f=AND. Our analysis draws another new connection between approximate degree and concentration phenomena. As a corollary of this result, we show that for any d <= n/64, any degree d polynomial approximating a symmetric function f to error 1/3 must have coefficients of l_1-norm at least K^{-3/2} * exp ({Omega (deg_{1/3}(f)^2/d)}). We also show this bound is essentially tight for any d > deg_{1/3}(f). These upper and lower bounds were also previously only known in the case f=AND. 
    more » « less