skip to main content


Title: Approximate Degree, Secret Sharing, and Concentration Phenomena
The epsilon-approximate degree, deg_epsilon(f), of a Boolean function f is the least degree of a real-valued polynomial that approximates f pointwise to within epsilon. A sound and complete certificate for approximate degree being at least k is a pair of probability distributions, also known as a dual polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage 1 - epsilon. Our contributions are: - We give a simple, explicit new construction of a dual polynomial for the AND function on n bits, certifying that its epsilon-approximate degree is Omega (sqrt{n log 1/epsilon}). This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-once DNF is Omega(sqrt{n}). It draws a novel connection between the approximate degree of AND and anti-concentration of the Binomial distribution. - We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indistinguishable are also statistically K-wise indistinguishable with at most K^{3/2} * exp (-Omega (k^2/K)) error for all k < K <= n/64. This bound is essentially tight, and implies that any symmetric function f is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-K coalitions with statistical error K^{3/2} * exp (-Omega (deg_{1/3}(f)^2/K)) for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that K be determined in advance, and only worked for f=AND. Our analysis draws another new connection between approximate degree and concentration phenomena. As a corollary of this result, we show that for any d <= n/64, any degree d polynomial approximating a symmetric function f to error 1/3 must have coefficients of l_1-norm at least K^{-3/2} * exp ({Omega (deg_{1/3}(f)^2/d)}). We also show this bound is essentially tight for any d > deg_{1/3}(f). These upper and lower bounds were also previously only known in the case f=AND.  more » « less
Award ID(s):
1845125
NSF-PAR ID:
10142339
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
145
ISSN:
1868-8969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Boolean functions play an important role in many different areas of computer science. The _local sensitivity_ of a Boolean function $f:\{0,1\}^n\to \{0,1\}$ on an input $x\in\{0,1\}^n$ is the number of coordinates whose flip changes the value of $f(x)$, i.e., the number of i's such that $f(x)\not=f(x+e_i)$, where $e_i$ is the $i$-th unit vector. The _sensitivity_ of a Boolean function is its maximum local sensitivity. In other words, the sensitivity measures the robustness of a Boolean function with respect to a perturbation of its input. Another notion that measures the robustness is block sensitivity. The _local block sensitivity_ of a Boolean function $f:\{0,1\}^n\to \{0,1\}$ on an input $x\in\{0,1\}^n$ is the number of disjoint subsets $I$ of $\{1,..,n\}$ such that flipping the coordinates indexed by $I$ changes the value of $f(x)$, and the _block sensitivity_ of $f$ is its maximum local block sensitivity. Since the local block sensitivity is at least the local sensitivity for any input $x$, the block sensitivity of $f$ is at least the sensitivity of $f$.The next example demonstrates that the block sensitivity of a Boolean function is not linearly bounded by its sensitivity. Fix an integer $k\ge 2$ and define a Boolean function $f:\{0,1\}^{2k^2}\to\{0,1\}$ as follows: the coordinates of $x\in\{0,1\}^{2k^2}$ are split into $k$ blocks of size $2k$ each and $f(x)=1$ if and only if at least one of the blocks contains exactly two entries equal to one and these entries are consecutive. While the sensitivity of the function $f$ is $2k$, its block sensitivity is $k^2$. The Sensitivity Conjecture, made by Nisan and Szegedy in 1992, asserts that the block sensitivity of a Boolean function is polynomially bounded by its sensivity. The example above shows that the degree of such a polynomial must be at least two.The Sensitivity Conjecture has been recently proven by Huang in [Annals of Mathematics 190 (2019), 949-955](https://doi.org/10.4007/annals.2019.190.3.6). He proved the following combinatorial statement that implies the conjecture (with the degree of the polynomial equal to four): any subset of more than half of the vertices of the $n$-dimensional cube $\{0,1\}^n$ induces a subgraph that contains a vertex with degree at least $\sqrt{n}$. The present article extends this result as follows: every Cayley graph with the vertex set $\{0,1\}^n$ and any generating set of size $d$ (the vertex set is viewed as a vector space over the binary field) satisfies that any subset of more than half of its vertices induces a subgraph that contains a vertex of degree at least $\sqrt{d}$. In particular, when the generating set consists of the $n$ unit vectors, the Cayley graph is the $n$-dimensional hypercube. 
    more » « less
  2. Abstract

    We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the corresponding noiseless output distribution$$p_{\text {ideal}}$$pidealshrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmarkFthat measures this correlation behaves as$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$F=exp(-2sϵ±O(sϵ2)), where$$\epsilon $$ϵis the probability of error per circuit location andsis the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the uniform distribution$$p_{\text {unif}}$$punifdecays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$pnoisyFpideal+(1-F)punif. In other words, although at least one local error occurs with probability$$1-F$$1-F, the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$O(F\epsilon \sqrt{s})$$O(Fϵs). Thus, the “white-noise approximation” is meaningful when$$\epsilon \sqrt{s} \ll 1$$ϵs1, a quadratically weaker condition than the$$\epsilon s\ll 1$$ϵs1requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$s \ge \Omega (n\log (n))$$sΩ(nlog(n)), which corresponds to onlylogarithmic depthcircuits, and if, additionally, the inverse error rate satisfies$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ϵ-1Ω~(n), which is needed to ensure errors are scrambled faster thanFdecays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.

     
    more » « less
  3. We prove two new results about the inability of low-degree polynomials to uniformly approximate constant-depth circuits, even to slightly-better-than-trivial error. First, we prove a tight Omega~(n^{1/2}) lower bound on the threshold degree of the SURJECTIVITY function on n variables. This matches the best known threshold degree bound for any AC^0 function, previously exhibited by a much more complicated circuit of larger depth (Sherstov, FOCS 2015). Our result also extends to a 2^{Omega~(n^{1/2})} lower bound on the sign-rank of an AC^0 function, improving on the previous best bound of 2^{Omega(n^{2/5})} (Bun and Thaler, ICALP 2016). Second, for any delta>0, we exhibit a function f : {-1,1}^n -> {-1,1} that is computed by a circuit of depth O(1/delta) and is hard to approximate by polynomials in the following sense: f cannot be uniformly approximated to error epsilon=1-2^{-Omega(n^{1-delta})}, even by polynomials of degree n^{1-delta}. Our recent prior work (Bun and Thaler, FOCS 2017) proved a similar lower bound, but which held only for error epsilon=1/3. Our result implies 2^{Omega(n^{1-delta})} lower bounds on the complexity of AC^0 under a variety of basic measures such as discrepancy, margin complexity, and threshold weight. This nearly matches the trivial upper bound of 2^{O(n)} that holds for every function. The previous best lower bound on AC^0 for these measures was 2^{Omega(n^{1/2})} (Sherstov, FOCS 2015). Additional applications in learning theory, communication complexity, and cryptography are described. 
    more » « less
  4. null (Ed.)
    The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017). 
    more » « less
  5. We present a weighted approach to compute a maximum cardinality matching in an arbitrary bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite graph G(A cup B,E) with edge weights of 0 or 1. Let w <= n be an upper bound on the weight of any matching in G. Consider the subgraph induced by all the edges of G with a weight 0. Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We present an algorithm to compute a maximum cardinality matching in G in O~(m(sqrt{w} + sqrt{r} + wr/n)) time. When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m sqrt{n}) time. However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r are sub-linear in n and wr=O(n^{gamma}) for gamma < 3/2, then we can compute maximum cardinality matching in G in o(m sqrt{n}) time. Using our algorithm, we obtain a new O~(n^{4/3}/epsilon^4) time algorithm to compute an epsilon-approximate bottleneck matching of A,B subsetR^2 and an 1/(epsilon^{O(d)}}n^{1+(d-1)/(2d-1)}) poly log n time algorithm for computing epsilon-approximate bottleneck matching in d-dimensions. All previous algorithms take Omega(n^{3/2}) time. Given any graph G(A cup B,E) that has an easily computable balanced vertex separator for every subgraph G'(V',E') of size |V'|^{delta}, for delta in [1/2,1), we can apply our algorithm to compute a maximum matching in O~(mn^{delta/1+delta}) time improving upon the O(m sqrt{n}) time taken by the HK-Algorithm. 
    more » « less