Abstract The nonenzymatic copying of RNA is thought to have been necessary for the transition between prebiotic chemistry and ribozyme-catalyzed RNA replication in the RNA World. We have previously shown that a potentially prebiotic nucleotide activation pathway based on phospho-Passerini chemistry can lead to the efficient synthesis of 2-aminoimidazole activated mononucleotides when carried out under freeze-thaw cycling conditions. Such activated nucleotides react with each other to form 5′–5′ 2-aminoimidazolium bridged dinucleotides, enabling template-directed primer extension to occur within the same reaction mixture. However, mononucleotides linked to oligonucleotides by a 5′–5′ 2-aminoimidazolium bridge are superior substrates for nonenzymatic primer extension; their higher intrinsic reactivity and their higher template affinity enable faster template copying at lower substrate concentrations. Here we show that eutectic phase phospho-Passerini chemistry efficiently activates short oligonucleotides and promotes the formation of monomer-bridged-oligonucleotide species during freeze-thaw cycles. We then demonstrate that in-situ generated monomer-bridged-oligonucleotides lead to efficient nonenzymatic template copying in the same reaction mixture. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.
more »
« less
Overcoming nucleotide bias in the nonenzymatic copying of RNA templates
Abstract The RNA World hypothesis posits that RNA was the molecule of both heredity and function during the emergence of life. This hypothesis implies that RNA templates can be copied, and ultimately replicated, without the catalytic aid of evolved enzymes. A major problem with nonenzymatic template-directed polymerization has been the very poor copying of sequences containing rA and rU. Here, we overcome that problem by using a prebiotically plausible mixture of RNA mononucleotides and random-sequence oligonucleotides, all activated by methyl isocyanide chemistry, that direct the uniform copying of arbitrary-sequence templates, including those harboring rA and rU. We further show that the use of this mixture in copying reactions suppresses copying errors while also generating a more uniform distribution of mismatches than observed for simpler systems. We find that oligonucleotide competition for template binding sites, oligonucleotide ligation and the template binding properties of reactant intermediates work together to reduce product sequence bias and errors. Finally, we show that iterative cycling of templated polymerization and activation chemistry improves the yields of random-sequence products. These results for random-sequence template copying are a significant advance in the pursuit of nonenzymatic RNA replication.
more »
« less
- Award ID(s):
- 2325198
- PAR ID:
- 10554804
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 52
- Issue:
- 22
- ISSN:
- 0305-1048
- Format(s):
- Medium: X Size: p. 13515-13529
- Size(s):
- p. 13515-13529
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The identification of nonenzymatic pathways for nucleic acid replication is a key challenge in understanding the origin of life. We have previously shown that nonenzymatic RNA primer extension using 2-aminoimidazole (2AI) activated nucleotides occurs primarily through an imidazolium-bridged dinucleotide intermediate. The reactive nature and preorganized structure of the intermediate increase the efficiency of primer extension but remain insufficient to drive extensive copying of RNA templates containing all four canonical nucleotides. To understand the factors that limit RNA copying, we synthesized all ten 2AI-bridged dinucleotide intermediates and measured the kinetics of primer extension in a model system. The affinities of the ten dinucleotides for the primer/template/helper complexes vary by over 7,000-fold, consistent with nearest neighbor energetic predictions. Surprisingly, the reaction rates at saturating intermediate concentrations still vary by over 15-fold, with the most weakly binding dinucleotides exhibiting a lower maximal reaction rate. Certain noncanonical nucleotides can decrease sequence dependent differences in affinity and primer extension rate, while monomers bridged to short oligonucleotides exhibit enhanced binding and reaction rates. We suggest that more uniform binding and reactivity of imidazolium-bridged intermediates may lead to the ability to copy arbitrary template sequences under prebiotically plausible conditions.more » « less
-
Nonenzymatic template-directed RNA copying using chemically activated nucleotides is thought to have played a key role in the emergence of genetic information on the early Earth. A longstanding question concerns the number and nature of different environments that might have been necessary to enable all of the steps from nucleotide synthesis to RNA copying. Here we explore three sequential steps from this overall pathway: nucleotide activation, synthesis of imidazolium-bridged dinucleotides, and template-directed RNA copying. We find that all three steps can take place in one reaction mixture undergoing multiple freeze-thaw cycles. Recent experiments have demonstrated a potentially prebiotic methyl isocyanide-based nucleotide activation chemistry. However, the original version of this approach is incompatible with nonenzymatic RNA copying because the high required concentration of the imidazole activating group prevents the accumulation of the essential imidazolium-bridged dinucleotide. Here we report that ice eutectic phase conditions facilitate not only the methyl isocyanide-based activation of ribonucleotide 5′-monophosphates with stoichiometric 2-aminoimidazole, but also the subsequent conversion of these activated mononucleotides into imidazolium-bridged dinucleotides. Furthermore, this one-pot approach is compatible with template-directed RNA copying in the same reaction mixture. Our results suggest that the simple and common environmental fluctuation of freeze-thaw cycles could have played an important role in prebiotic nucleotide activation and nonenzymatic RNA copying.more » « less
-
Nonenzymatic RNA copying is thought to have been responsible for the replication of genetic information during the origin of life. However, chemical copying with the canonical nucleotides (A, U, G, and C) strongly favors the incorporation of G and C and disfavors the incorporation of A and especially U because of the stronger G:C vs. A:U base pair and the weaker stacking interactions of U. Recent advances in prebiotic chemistry suggest that the 2-thiopyrimidines were precursors to the canonical pyrimidines, raising the possibility that they may have played an important early role in RNA copying chemistry. Furthermore, 2-thiouridine (s2U) and inosine (I) form by deamination of 2-thiocytidine (s2C) and A, respectively. We used thermodynamic and crystallographic analyses to compare the I:s2C and A:s2U base pairs. We find that the I:s2C base pair is isomorphic and isoenergetic with the A:s2U base pair. The I:s2C base pair is weaker than a canonical G:C base pair, while the A:s2U base pair is stronger than the canonical A:U base pair, so that a genetic alphabet consisting of s2U, s2C, I, and A generates RNA duplexes with uniform base pairing energies. Consistent with these results, kinetic analysis of nonenzymatic template-directed primer extension reactions reveals that s2C and s2U substrates bind similarly to I and A in the template, and vice versa. Our work supports the plausibility of a potentially primordial genetic alphabet consisting of s2U, s2C, I, and A and offers a potential solution to the long-standing problem of biased nucleotide incorporation during nonenzymatic template copying.more » « less
-
Abstract Hybridization and strand displacement kinetics determine the evolution of the base paired configurations of mixtures of oligonucleotides over time. Although much attention has been focused on the thermodynamics of DNA and RNA base pairing in the scientific literature, much less work has been done on the time dependence of interactions involving multiple strands, especially in RNA. Here we provide a study of oligoribonucleotide interaction kinetics and show that it is possible to calculate the association, dissociation and strand displacement rates displayed by short oligonucleotides (5nt–12nt) that exhibit no expected secondary structure as simple functions of oligonucleotide length, CG content, ΔG of hybridization and ΔG of toehold binding. We then show that the resultant calculated kinetic parameters are consistent with the experimentally observed time dependent changes in concentrations of the different species present in mixtures of multiple competing RNA strands. We show that by changing the mixture composition, it is possible to create and tune kinetic traps that extend by orders of magnitude the typical sub-second hybridization timescale of two complementary oligonucleotides. We suggest that the slow equilibration of complex oligonucleotide mixtures may have facilitated the nonenzymatic replication of RNA during the origin of life.more » « less
An official website of the United States government
