skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non‐Uniform Electric Field Manipulation of Chromogenic Peptide Amphiphile Assemblies
Abstract This work investigates the influence of dielectrophoretic forces on the structural features and the resulting aggregates of a chromogenic model system, peptide‐diacetylene (D3GV‐DA) amphiphiles. Here, we systematically investigate how non‐uniform electric fields impact the (i) peptide‐directed supramolecular assembly stage and (ii) topochemical photopolymerization stage of polydiacetylenes (PDAs) in a quadrupole‐based dielectrophoresis (DEP) device, as well as the (iii) manipulation of D3GV‐DA aggregates in a light‐induced DEP (LiDEP) platform. The conformation‐dependent chromatic phases of peptide‐PDAs are utilized to probe the chain‐level effect of DEP exposure after the supramolecular assembly or after the topochemical photopolymerization stage. Steady‐state spectroscopic and microscopy analyses show that structural features such as the chirality and morphologies of peptidic 1‐D nanostructures are mostly conserved upon DEP exposure, but applying mild, non‐uniform fields at the self‐assembly stage is sufficient for fine‐tuning the chromatic phase ratio in peptide‐PDAs and manipulating their aggregates via LiDEP. Overall, this work provides insights into how non‐uniform electric fields offer a controllable approach to fine‐tune or preserve the molecularly preset assembly order of DEP‐responsive supramolecular or biopolymeric assemblies, as well as manipulate their aggregates using light projections, which have future implications for the precision fabrication of macromolecular systems with hierarchical structure‐dependent function.  more » « less
Award ID(s):
2239647 2011967
PAR ID:
10554881
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemSystemsChem
Volume:
7
Issue:
3
ISSN:
2570-4206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dielectrophoresis is a force applied to microparticles in non-uniform electric field. The presented study discusses the fabrication of the glassy carbon interdigitated microelectrode arrays using lithography process based on lithographic patterning and subsequent pyrolysis of negative SU-8 photoresist. Resulting high resistance electrodes would have the regions of high electric field at the ends of microarray as demonstrated by simulation. The study demonstrates that combining the AC applied bias with the DC offset allows the user to separate sub-populations of microparticulates and control the propulsion of microparticles to the high field areas such as the ends of the electrode array. The direction of the movement of the particles can be switched by changing the offset. The demonstrated novel integrated DEP separation and propulsion can be applied to various fields including in-vitro diagnostics as well as to microassembly technologies. 
    more » « less
  2. null (Ed.)
    The development of supramolecular tools to modulate the excitonic properties of non-covalent assemblies paves the way to engineer new classes of semicondcuting materials relevant to flexible electronics. While controlling the assembly pathways of organic chromophores enables the formation of J-like and H-like aggregates, strategies to tailor the excitonic properties of pre-assembled aggregates through post-modification are scarce. In the present contribution, we combine supramolecular chemistry with redox chemistry to modulate the excitonic properties and solid-state morphologies of aggregates built from stacks of water-soluble perylene diimide building blocks. The n-doping of initially formed aggregates in an aqueous medium is shown to produce π–anion stacks for which spectroscopic properties unveil a non-negligible degree of electron–electron interactions. Oxidation of the n-doped intermediates produces metastable aggregates where free exciton bandwidths (Ex BW ) increase as a function of time. Kinetic data analysis reveals that the dynamic increase of free exciton bandwidth is associated with the formation of superstructures constructed by means of a nucleation-growth mechanism. By designing different redox-assisted assembly pathways, we highlight that the sacrificial electron donor plays a non-innocent role in regulating the structure–function properties of the final superstructures. Furthermore, supramolecular architectures formed via a nucleation-growth mechanism evolve into ribbon-like and fiber-like materials in the solid-state, as characterized by SEM and HRTEM. Through a combination of ground-state electronic absorption spectroscopy, electrochemistry, spectroelectrochemistry, microscopy, and modeling, we show that redox-assisted assembly provides a means to reprogram the structure–function properties of pre-assembled aggregates. 
    more » « less
  3. Dielectrophoresis (DEP) is a label-free electrokinetic method for selectively trapping polarizable particles using non-uniform electric fields. While co-planar electrode systems are common, their inherent DEP force distribution limits throughput. This study presents a computationally efficient framework for modeling two-dimensional DEP-based particle trapping in ordered arrays of conductive cylinders. These cylinders are modeled at a range of sizes, from micrometers to nanometers, to represent microfluidic systems consisting of conductive pillars, nanofibers, etc. Analytical solutions for fluid flow and electric potential were derived using eigenfunction expansions and collocation, then used in a particle tracking model that includes hydrodynamic drag, Brownian motion, and multipolar DEP forces. Although focused on conductive arrays, this framework is extensible to other configurations. This work provides a foundation for future work in the design of high-throughput DEP systems. Both dimensionless and dimensional analyses were performed across a wide range of particle sizes (30 nm to 3 μm), voltages (10 mV to 100 V), and array geometries. No specific optimal cylinder size was found; instead, optimal performance arises from a balance between DEP force distribution and flow through the cylinder array gap. Diamond-oriented arrays exhibited enhanced trapping under moderate dielectrophoretic velocity-to-fluid velocity ratios (up to 39% greater), while square arrays performed better under low-field and large-cylinder conditions (up to 40% greater). 
    more » « less
  4. Dopamine (DA) is an important neurotransmitter, which is essential for transmitting signals in neuronal communications. The deficiency of DA release from neurons is implicated in neurological disorders. There has been great interest in developing new optical probes for monitoring the release behavior of DA from neurons. H-aggregates of organic dyes represent an ordered supramolecular structure with delocalized excitons. In this paper, we use the self-assembly of 3,3′-diethylthiadicarbocyanine iodide (DiSC 2 (5)) in ammonia solution to develop crystalline H-aggregate nanoparticles, in which DiSC 2 (5) molecules show long-range π–π stacking. The crystalline H-aggregate nanoparticles are stable in cell culture medium and can serve as an efficient photo-induced electron transfer (PET) probe for the detection of DA with the concentration as low as 0.1 nM in cell culture medium. Furthermore, the crystalline H-aggregate nanoparticle-based PET probe is used to detect the release behavior of DA from the M17 human neuroblastoma cells. We find that the DA release from the cells is enhanced by nicotine stimulations. Our results highlight the potential of crystalline H-aggregate nanoparticle-based PET probes for diagnosing nervous system diseases and verifying therapies. 
    more » « less
  5. In this study, we investigated hierarchical microarchitecture formation of magnetic barium hexaferrite (BF) platelets inside the polydimethylsiloxane (PDMS) matrix using electric and magnetic field colloidal assembly technique. First, external fields were applied to the colloidal solution to form the microstructure before curing the composites. After microstructure formation the composites were cured to freeze the microstructure by the application of heat. We investigated two different cases in this study-(1) magnetic field processed composites and (2) multi-field processed composites which were processed under both magnetic and electric field. We observed that macro-chains formed due to the electric and magnetic field had much higher length compared to the macro-chains formed due to the just magnetic field. For both cases individuals BHF are found to be oriented in the direction of external field. The analysis of SEM microstructures using ImageJ and MATLAB showed that at least two different level of hierarchies are present in the microstructure for both cases which can be named as BHF stacks and micro-chains. From the microstructure analysis, we found that compared to just magnetic field processed composites, the orientation of individual particles, BHF stacks and micro-chains in relation to the external field were found to be higher for the multi-field processed composites. Magneto-electro-hydrodynamics modeling of the polymer-particulate mixture predicted similar behavior. Computational simulations were performed wherein particulates, subjected to both DEP forces and additional magnetic dipole interactions, were allowed to form quasi-equilibrium structures before locking in a final structure to represent curing. Results show that dielectrophoretic (DEP) force produced from the local non-uniform electric field facilitates the translation of the platelets towards formation of chain-like structure, while external magnetic field augmented the rotation of particles inside the chain-like structure. Analysis of the simulation of microstructures confirms that multiple level of hierarchies are present in the composites microstructure for both cases, while the case with both electric and magnetic fields produced longer chains. The understanding of the hierarchical microstructure formation using the multi-field processing technique will help in the future to fabricate more complex microarchitectures with resulting multi-material properties. 
    more » « less