skip to main content


Title: Towards complex microarchitectural nanocomposites using non-uniform multi-field processing
In this study, we investigated hierarchical microarchitecture formation of magnetic barium hexaferrite (BF) platelets inside the polydimethylsiloxane (PDMS) matrix using electric and magnetic field colloidal assembly technique. First, external fields were applied to the colloidal solution to form the microstructure before curing the composites. After microstructure formation the composites were cured to freeze the microstructure by the application of heat. We investigated two different cases in this study-(1) magnetic field processed composites and (2) multi-field processed composites which were processed under both magnetic and electric field. We observed that macro-chains formed due to the electric and magnetic field had much higher length compared to the macro-chains formed due to the just magnetic field. For both cases individuals BHF are found to be oriented in the direction of external field. The analysis of SEM microstructures using ImageJ and MATLAB showed that at least two different level of hierarchies are present in the microstructure for both cases which can be named as BHF stacks and micro-chains. From the microstructure analysis, we found that compared to just magnetic field processed composites, the orientation of individual particles, BHF stacks and micro-chains in relation to the external field were found to be higher for the multi-field processed composites. Magneto-electro-hydrodynamics modeling of the polymer-particulate mixture predicted similar behavior. Computational simulations were performed wherein particulates, subjected to both DEP forces and additional magnetic dipole interactions, were allowed to form quasi-equilibrium structures before locking in a final structure to represent curing. Results show that dielectrophoretic (DEP) force produced from the local non-uniform electric field facilitates the translation of the platelets towards formation of chain-like structure, while external magnetic field augmented the rotation of particles inside the chain-like structure. Analysis of the simulation of microstructures confirms that multiple level of hierarchies are present in the composites microstructure for both cases, while the case with both electric and magnetic fields produced longer chains. The understanding of the hierarchical microstructure formation using the multi-field processing technique will help in the future to fabricate more complex microarchitectures with resulting multi-material properties.  more » « less
Award ID(s):
1762188
NSF-PAR ID:
10111936
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
SPIE Proceedings
Date Published:
Journal Name:
Proc. SPIE 10968, Behavior and Mechanics of Multifunctional Materials XIII, 109680G
Volume:
10968
Page Range / eLocation ID:
15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Properties of particulate-filled polymer matrix composites are highly dependent on the spatial position, orientation and assembly of the particles throughout the matrix. External fields such as electric and magnetic have been individually used to orient, position and assemble micro and nanoparticles in polymer solutions and their resulting material properties were investigated, but the combined effect of using more than one external field on the material properties has not been studied in detail. Applying different configurations of electric and magnetic fields on geometrically and magnetically anisotropic particulates can produce varying microarchitectures with a range of material properties. Experimentally and with simulations, we systematically probe the effect of combined electric and magnetic fields on the microstructure formation of geometrically and magnetically anisotropic barium hexaferrite (BHF) in polydimethylsiloxane (PDMS). The magnetic and dielectric properties resulting from different microstructures are characterized and microstructure-property relationships are analyzed. Our results demonstrate that a variety of microarchitectures can be produced using multi-field processing depending on the nature of the applied external field. For example, the application of an electric field creates macro-chains where the orientation of the BHF stacks inside the macro-chains is random. On the other hand, application of a magnetic field rotates the BHF stacks within the macro-chain in the direction dictated by the magnetic field. In simulations, the dielectrophoretic, magnetic, and viscous forces and torques acting on the particles show that particle anisotropies are central to the ability to control orientation along the orthogonal magnetic and geometric axes, mirroring experimental results. The authors refer to the ability to manipulate particle orientation along orthogonal axes as ‘orthogonal control’. Using this technique, not only are a variety of microstructures possible, but also a range of dielectric and magnetic properties can result. For example, for 1 vol% BHF-PDMS composites, the experimental dielectric permittivity is found to vary from 2.84 to 5.12 and the squareness ratio (remnant magnetization over saturation magnetization) is found to vary from 0.55 to 0.92 (from 0.52 to 0.99 in simulations) depending on the applied external stimuli. The ability to predict and produce a variety of microstructures with a range of properties from a single material set will be particularly beneficial for resin pool based additive manufacturing and 3D printing.

     
    more » « less
  2. Abstract

    In this study, we discuss the characterization and quantification of composite microstructures formed by the external field manipulation of high aspect ratio magnetic particles in an elastomeric matrix. In our prior work, we have demonstrated that the simultaneous application of electric and magnetic fields on hard magnetic particles with geometric anisotropy can create a hierarchy of structures at different length scales, which can be used to achieve a wide range of properties. We aim to characterize these hierarchical structures and relate them to final composite properties so we can achieve our ultimate goal of designing a material for a prescribed performance. The complex particle structures are formed during processing by using electric and magnetic fields, and they are then locked-in by curing the polymer matrix around the particles. The model materials used in the study are barium hexaferrite (BHF) particles and polydimethylsiloxane (PDMS) elastomer. BHF was selected for its hard magnetic properties and high geometric anisotropy. PDMS was selected for its good mechanical properties and its tunable curing kinetics. The resulting BHF-PDMS composites are magnetoactive, i.e., they will deform and actuate in response to magnetic fields. In order to investigate the resulting particle orientation, distribution and alignment and to predict the composite’s macro scale properties, we developed techniques to quantify the particle structures.

    The general framework we developed allows us to quantify and directly compare the microstructures created within the composites. To identify structures at the different length scales, images of the composite are taken using both optical microscopy and scanning electron microscopy. We then use ImageJ to analyze them and gather data on particle size, location, and orientation angle. The data is then exported to MATLAB, and is used to run a Minimum Spanning Tree Algorithm to classify the particle structures, and von Mises Distributions to quantify the alignment of said structures.

    Important findings show 1) the ability to control structure using a combination of external electric, magnetic and thermal fields; 2) that electric fields promote long range order while magnetic fields promote short-range order; and 3) the resulting hierarchical structure greatly influence bulk material properties. Manipulating particles in a composite material is technologically important because changes in microstructure can alter the properties of the bulk material. The multifield processing we investigate here can form the basis for next generation additive manufacturing platforms where desired properties are tailored locally through in-situ hierarchical control of particle arrangements.

     
    more » « less
  3. Abstract

    Additive manufacturing, no longer reserved exclusively for prototyping components, can create parts with complex geometries and locally tailored properties. For example, multiple homogenous material sources can be used in different regions of a print or be mixed during printing to define properties locally. Additionally, heterogeneous composites provide an opportunity for another level of tuning properties through processing. For example, within particulate-filled polymer matrix composites before curing, the presence of an applied electric and/or magnetic fields can reorient filler particles and form hierarchical structures depending on the fields applied. Control of particle organization is important because effective material properties are highly dependent on the distribution of filler material within composites once cured. While previous work in homogenization and effective medium theories have determined properties based upon ideal analytic distributions of particle orientations and spatial location, this work expands upon these methods generating discrete distributions from quasi-Monte Carlo simulations of the electromagnetic processing event. Results of simulations provide predicted microarchitectures from which effective properties are determined via computational homogenization.

    These particle dynamics simulations account for dielectric and magnetic forces and torques in addition to hydrodynamic forces and hard particle separation. As such, the distributions generated are processing field dependent. The effective properties for a composite represented by this distribution are determined via computational homogenization using finite element analysis (FEA). This provides a path from constituents, through processing parameters to effective material properties. In this work, we use these simulations in conjunction with a multi-objective optimization scheme to resolve the relationships between processing conditions and effective properties, to inform field-assisted additive manufacturing processes.

    The constituent set providing the largest range of properties can be found using optimization techniques applied to the aforementioned simulation framework. This key information provides a recipe for tailoring properties for additive manufacturing design and production. For example, our simulation results show that stiffness for a 10% filler volume fraction can increase by 34% when aligned by an electric field as compared to a randomly distributed composite. The stiffness of this aligned sample is also 29% higher in the direction of the alignment than perpendicular to it, which only differs by 5% from the random case [1]. Understanding this behavior and accurately predicting composite properties is key to producing field processed composites and prints. Material property predictions compare favorably to effective medium theory and experimentation with trends in elastic and magnetic effective properties demonstrating the same anisotropic behavior as a result of applied field processing. This work will address the high computational expense of physics simulation based objective functions by using efficient algorithms and data structures. We will present an optimization framework using nested gradient searches for micro barium hexaferrite particles in a PDMS matrix, optimizing on composite magnetization to determine the volume fraction of filler that will provide the largest range of properties by varying the applied electric and magnetic fields.

     
    more » « less
  4. null (Ed.)
    Magnetically-guided colloidal assembly has proven to be a versatile method for building hierarchical particle assemblies. This review describes the dipolar interactions that govern superparamagnetic colloids in time-varying magnetic fields, and how such interactions have guided colloidal assembly into materials with increasing complexity that display novel dynamics. The assembly process is driven by magnetic dipole–dipole interactions, whose strength can be tuned to be attractive or repulsive. Generally, these interactions are directional in static external magnetic fields. More recently, time-varying magnetic fields have been utilized to generate dipolar interactions that vary in both time and space, allowing particle interactions to be tuned from anisotropic to isotropic. These interactions guide the dynamics of hierarchical assemblies of 1-D chains, 2-D networks, and 2-D clusters in both static and time-varying fields. Specifically, unlinked and chemically-linked colloidal chains exhibit complex dynamics, such as fragmentation, buckling, coiling, and wagging phenomena. 2-D networks exhibit controlled porosity and interesting coarsening dynamics. Finally, 2-D clusters have shown to be an ideal model system for exploring phenomena related to statistical thermodynamics. This review provides recent advances in this fast-growing field with a focus on its scientific potential. 
    more » « less
  5. null (Ed.)
    Abstract The data-driven approach is emerging as a promising method for the topological design of multiscale structures with greater efficiency. However, existing data-driven methods mostly focus on a single class of microstructures without considering multiple classes to accommodate spatially varying desired properties. The key challenge is the lack of an inherent ordering or “distance” measure between different classes of microstructures in meeting a range of properties. To overcome this hurdle, we extend the newly developed latent-variable Gaussian process (LVGP) models to create multi-response LVGP (MR-LVGP) models for the microstructure libraries of metamaterials, taking both qualitative microstructure concepts and quantitative microstructure design variables as mixed-variable inputs. The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses, providing substantial insights into the interplay between different geometrical classes and material parameters of microstructures. With this model, we can easily obtain a continuous and differentiable transition between different microstructure concepts that can render gradient information for multiscale topology optimization. We demonstrate its benefits through multiscale topology optimization with aperiodic microstructures. Design examples reveal that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures. 
    more » « less