skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metal Carbene-Directed Intramolecular Vinylogous Reactions of Vinyldiazoacetates
Intramolecular addition reactions of electrophilic metallovinylcarbenes with nucleophiles that do not have access to the carbene center undergo addition to the vinylogous position, forming products that rely on subsequent transformations of vinylmetal intermediates. Catalytic addition to a carbon-carbon double bond elicits the formation of an intermediate carbocation whose proton loss causes protodemetalation of the vinylmetal intermediate. Addition to the azido group results in the formation of aliphatic 1,2,3-triazines by [3 + 3]-cycloaddition. Catalytic intramolecular reactions with a carbamate nucleophile yield a carbonyl ylide whose loss of isobutylene produces oximidovinyl-oxazolidinone esters with high enantioselectivity. Comparisons are made between rhodium, copper, gold, and silver catalysts  more » « less
Award ID(s):
2054845
PAR ID:
10554890
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Crudden, Cathleen
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Catalysis
Volume:
14
ISSN:
2155-5435
Page Range / eLocation ID:
16618 to 16623
Subject(s) / Keyword(s):
intramolecular reactions, vinyldiazo compounds, metallovinylcarbenes, electrophilic addition, catalysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Highly selective formal [3 + 2]-cycloaddition of vinyldiazoacetates with quinone ketals and quinoneimine ketals has been accomplished at room temperature with catalytic amounts of the Brønsted acid triflimide, leading to highly functionalized diazoacetates in good yields. The vinyldiazonium ion generated by electrophilic addition to the vinylogous position of the reactant vinyldiazo compound is the key intermediate in this selective transformation. Both oximidovinyldiazoacetates and those with other vinyl substituents undergo cycloaddition reactions with quinone ketals whose products, after extended reaction times, undergo substrate-dependent 1,2-migration; catalysis by Rh2(OAc)4, HNTf2, and Sc(OTf)3 effects these 1,2-migrations to the same products. However, the products from HNTf2-catalyzed reactions between quinoneimine and oximidovinyldiazoacetates undergo Rh2(OAc)4-catalyzed 1,3-C−H insertion. 1,3-Difunctionalization products are obtained for electrophilic reactions of Eschenmoser’s salt with selected vinyldiazoacetates, but with α-dibenzylaminomethyl ether, 1,6-hydride transfer reactions are observed with oximidovinyldiazoacetates. 
    more » « less
  2. Abstract A general catalytic methodology for the synthesis of pyrazolines from α‐diazo compounds and conjugated alkenes is reported. The direct hydrogen atom transfer (HAT) process of α‐diazo compounds promoted by thetert‐butylperoxy radical generates electrophilic diazomethyl radicals, thereby reversing the reactivity of the carbon atom attached with the diazo group. The regiocontrolled addition of diazomethyl radicals to carbon‐carbon double bonds followed by intramolecular ring closure on the terminal diazo nitrogen and tautomerization affords a diverse set of pyrazolines in good yields with excellent regioselectivity. This strategy overcomes the limitations of electron‐deficient alkenes in traditional dipolar [3+2]‐cycloaddition of α‐diazo compounds with alkenes. Furthermore, the straightforward formation of the diazomethyl radicals provides umpolung reactivity, thus opening new opportunities for the versatile transformations of diazo compounds. 
    more » « less
  3. Abstract Palladium‐catalyzed Suzuki‐Miyaura (SM) coupling is widely utilized in the construction of carbon‐carbon bonds. In this study, nanoelectrospray ionization mass spectrometry (nanoESI‐MS) is applied to simultaneously monitor precatalysts, catalytic intermediates, reagents, and products of the SM cross‐coupling reaction of 3‐Br‐5‐Ph‐pyridine and phenylboronic acid. A set of Pd cluster ions related to the monoligated Pd (0) active catalyst is detected, and its deconvoluted isotopic distribution reveals contributions from two neutral molecules. One is assigned to the generally accepted Pd(0) active catalyst, seen in MS as the protonated molecule, while the other is tentatively assigned to an oxidized catalyst which was found to increase as the reaction proceeds. Oxidative stress testing of a synthetic model catalyst 1,5‐cyclooctadiene Pd XPhos (COD−Pd‐XPhos) performed using FeCl3supported this assignment. The formation and conversion of the oxidative addition intermediate during the catalytic cycle was monitored to provide information on the progress of the transmetalation step. 
    more » « less
  4. The radicalS-adenosylmethionine (rSAM) enzyme SuiB catalyzes the formation of an unusual carbon–carbon bond between the sidechains of lysine (Lys) and tryptophan (Trp) in the biosynthesis of a ribosomal peptide natural product. Prior work on SuiB has suggested that the Lys–Trp cross-link is formed via radical electrophilic aromatic substitution (rEAS), in which an auxiliary [4Fe-4S] cluster (AuxI), bound in the SPASM domain of SuiB, carries out an essential oxidation reaction during turnover. Despite the prevalence of auxiliary clusters in over 165,000 rSAM enzymes, direct evidence for their catalytic role has not been reported. Here, we have used electron paramagnetic resonance (EPR) spectroscopy to dissect the SuiB mechanism. Our studies reveal substrate-dependent redox potential tuning of the AuxI cluster, constraining it to the oxidized [4Fe-4S]2+state, which is active in catalysis. We further report the trapping and characterization of an unprecedented cross-linked Lys–Trp radical (Lys–Trp•) in addition to the organometallic Ω intermediate, providing compelling support for the proposed rEAS mechanism. Finally, we observe oxidation of the Lys–Trp• intermediate by the redox-tuned [4Fe-4S]2+AuxI cluster by EPR spectroscopy. Our findings provide direct evidence for a role of a SPASM domain auxiliary cluster and consolidate rEAS as a mechanistic paradigm for rSAM enzyme-catalyzed carbon–carbon bond-forming reactions. 
    more » « less
  5. Chartreusin is a potent antiproliferative agent that contains a unique aromatic pentacyclic bislactone carbon scaffold. The biosynthesis of type II polyketide aglycone has been extensively investigated and shown to proceed through a tetracyclic anthracycline intermediate. The last remaining unknown steps are the conversion of auramycinone to resomycin C. Here we have discovered three enzymes that play crucial roles in two mechanistically distinct dehydration reactions. We show that ChaX is an NAD(P)H-dependent auramycinone quinone reductase that allows the cyclase-like ChaU to catalyze the formation of 9,10-dehydroauramycinone via a carbanion intermediate. In contrast, the cyclase-like ChaJ, homologous to ChaU, is responsible for subsequent 7,8-dehydration via a canonical carbocation intermediate, yielding resomycin C. The results were confirmed via assembly of the biosynthetic pathway for production of resomycin C in Streptomyces coelicolor M1152ΔmatAB. The work expands the catalytic repertoire of the SnoaL protein family, which has previously been associated with anthracycline fourth-ring cyclization and two-component 1-hydroxylation. 
    more » « less