skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PEPSI’s non-detection of escaping hydrogen and metal lines adds to the enigma of WASP-12 b
ABSTRACT WASP-12 b is an ultra-hot Jupiter of special interest for atmospheric studies since it is on an inspiraling orbit in an extreme environment of intense radiation and circumstellar gas. Previously claimed detections of active mass-loss from this planet are controversial across the literature. To address this controversy, we obtain two new transit observations of WASP-12 b with the optical high-resolution PEPSI spectrograph on the Large Binocular Telescope. Contrary to previous work, we do not observe planetary H$$\alpha$$ absorption and rule out the amplitude of previously reported detections. Our non-detection may be limited by the sensitivity of our data or could indicate weaker mass-loss than suggested by previous studies. We conduct injection-recovery experiments to place constraints on the radial extent of WASP-12 b’s escaping atmosphere as probed by Balmer lines, but find that our data do not have the sensitivity to probe down to the planet’s Roche lobe. Using physically motivated models of atmospheric escape, we explore upper limit constraints on the planet’s mass-loss rate and deem the data quality in the wavelength regime of Balmer lines insufficient to determine a physically meaningful constraint. We also conduct a spectral survey of other optical absorbers to trace atmospheric circulation but detect no additional absorption. We conclude that previous claims of H$$\alpha$$ absorption from the atmosphere of WASP-12 b should be reevaluated. Given the anticipated line strength of Balmer/optical features, observing the atmosphere of this faint target will require stacking more observations even with the largest telescope facilities available.  more » « less
Award ID(s):
2143400
PAR ID:
10554932
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
535
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1829-1843
Size(s):
p. 1829-1843
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the detection of neutral helium at 10833 Å in the atmosphere of WASP-52b and tentative evidence of helium in the atmosphere of the grazing WASP-177b, using high-resolution observations acquired with the NIRSPEC instrument on the Keck II telescope. We detect excess absorption by helium in WASP-52b’s atmosphere of 3.44% ± 0.31% (11 σ ), or equivalently 66 ± 5 atmospheric scale heights. This absorption is centered on the planet’s rest frame (Δ v = 0.00 ± 1.19 km s −1 ). We model the planet’s escape using a 1D Parker wind model and calculate its mass-loss rate to be ∼1.4 × 10 11 g s −1 , or equivalently 0.5% of its mass per gigayear. For WASP-177b, we see evidence for redshifted (Δ v = 6.02 ± 1.88 km s −1 ) helium-like absorption of 1.28% ± 0.29% (equal to 23 ± 5 atmospheric scale heights). However, due to residual systematics in the transmission spectrum of similar amplitude, we do not interpret this as significant evidence for He absorption in the planet’s atmosphere. Using a 1D Parker wind model, we set a 3 σ upper limit on WASP-177b’s escape rate of 7.9 × 10 10 g s −1 . Our results, taken together with recent literature detections, suggest the tentative relation between XUV irradiation and He i absorption amplitude may be shallower than previously suggested. Our results highlight how metastable helium can advance our understanding of atmospheric loss and its role in shaping the exoplanet population. 
    more » « less
  2. Abstract The elemental and isotopic abundances of volatiles like carbon, oxygen, and nitrogen may trace a planet’s formation location relative to H2O, CO2, CO, NH3, and N2“snowlines,” or the distance from the star at which these volatile elements sublimate. By comparing the C/O and12C/13C ratios measured in giant exoplanet atmospheres to complementary measurements of their host stars, we can determine whether the planet inherited stellar abundances from formation inside the volatile snowlines, or nonstellar C/O and13C enrichment characteristic of formation beyond the snowlines. To date, there are still only a handful of exoplanet systems where we can make a direct comparison of elemental and isotopic CNO abundances between an exoplanet and its host star. Here, we present a12C/13C abundance analysis for host star WASP-77A (whose hot Jupiter’s12C/13C abundance was recently measured). We use MARCS stellar atmosphere models and the radiative transfer code TurboSpectrum to generate synthetic stellar spectra for isotopic abundance calculations. We find a12C/13C ratio of 51 ± 6 for WASP-77A, which is subsolar (∼91) but may still indicate13C enrichment in its companion planet WASP-77A b (12C/13C = 26 ± 16, previously reported). Together with the inventory of carbon and oxygen abundances in both the host and companion planet, these chemical constraints point to WASP-77A b’s formation beyond the H2O and CO2snowlines and provide chemical evidence for the planet’s migration to its current location ∼0.024 au from its host star. 
    more » « less
  3. Abstract Ultra-hot Jupiters (UHJs) are among the best targets for atmospheric characterization at high spectral resolution. Resolving their transmission spectra as a function of orbital phase offers a unique window into the 3D nature of these objects. In this work, we present three transits of the UHJ WASP-121b observed with Gemini-S/IGRINS. For the first time, we measure the phase-dependent absorption signals of CO and H2O in the atmosphere of an exoplanet, and we find that they are different. While the blueshift of CO increases during the transit, the absorption lines of H2O become less blueshifted with phase, and even show a redshift in the second half of the transit. These measurements reveal the distinct spatial distributions of both molecules across the atmospheres of UHJs. Also, we find that the H2O signal is absent in the first quarter of the transit, potentially hinting at cloud formation on the evening terminator of WASP-121b. To further interpret the absorption trails of CO and H2O, as well as the Doppler shifts of Fe previously measured with VLT/ESPRESSO, we compare the data to simulated transits of WASP-121b. To this end, we post-process the outputs of the global circulation models with a 3D Monte-Carlo radiative transfer code. Our analysis shows that the atmosphere of WASP-121b is subject to atmospheric drag, as previously suggested by small hotspot offsets inferred from phase-curve observations. Our study highlights the importance of phase-resolved spectroscopy in unravelling the complex atmospheric structure of UHJs and sets the stage for further investigations into their chemistry and dynamics. 
    more » « less
  4. Abstract High-resolution spectroscopy of exoplanet atmospheres provides insights into their composition and dynamics from the resolved line shape and depth of thousands of spectral lines. WASP-127 b is an extremely inflated sub-Saturn (Rp= 1.311RJup,Mp= 0.16MJup) with previously reported detections of H2O and CO2. However, the seeming absence of the primary carbon reservoir expected at WASP-127 b temperatures (Teq∼1400 K) from chemical equilibrium, CO, posed a mystery. In this manuscript, we present the analysis of high-resolution observations of WASP-127 b with the Immersion Grating Infrared Spectrometer on Gemini South. We confirm the presence of H2O (8.67σ) and report the detection of CO (4.34σ). Additionally, we conduct a suite of Bayesian retrieval analyses covering a hierarchy of model complexity and self-consistency. When freely fitting for the molecular gas volume mixing ratios, we obtain super-solar metal enrichment for H2O abundance of log10X H 2 O = −1.23 0.49 + 0.29 and a lower limit on the CO abundance of log10XCO≥–2.20 at 2σconfidence. We also report tentative evidence of photochemistry in WASP-127 b based upon the indicative depletion of H2S. This is also supported by the data preferring models with photochemistry over free-chemistry and thermochemistry. The overall analysis implies a super-solar (∼39× Solar; [M/H] = 1.59 0.30 + 0.30 ) metallicity for the atmosphere of WASP-127 b and an upper limit on its atmospheric C/O ratio as < 0.68. 
    more » « less
  5. Abstract A primary goal of exoplanet science is to measure the atmospheric composition of gas giants in order to infer their formation and migration histories. Common diagnostics for planet formation are the atmospheric metallicity ([M/H]) and the carbon-to-oxygen (C/O) ratio as measured through transit or emission spectroscopy. The C/O ratio in particular can be used to approximately place a planet’s initial formation radius from the stellar host, but a given C/O ratio may not be unique to formation location. This degeneracy can be broken by combining measurements of both the C/O ratio and the atmospheric refractory-to-volatile ratio. We report the measurement of both quantities for the atmosphere of the canonical ultrahot Jupiter WASP-121 b using the high-resolution (R= 45,000) IGRINS instrument on Gemini South. Probing the planet’s direct thermal emission in both pre- and post-secondary eclipse orbital phases, we infer that WASP-121 b has a significantly superstellar C/O ratio of 0.70 0.10 + 0.07 and a moderately superstellar refractory-to-volatile ratio at 3.83 1.67 + 3.62 × stellar. This combination is most consistent with formation between the soot line and H2O snow line, but we cannot rule out formation between the H2O and CO snow lines or beyond the CO snow line. We also measure velocity offsets between H2O, CO, and OH, potentially an effect of chemical inhomogeneity on the planet dayside. This study highlights the ability to measure both C/O and refractory-to-volatile ratios via high-resolution spectroscopy in the near-IRHandKbands. 
    more » « less