skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Incoherence and fibering of many free-by-free groups
A group is called free-by-free if it is the semi-direct product of two finitely generated free groups. A group is coherent if any finitely generated subgroup is finitely presented, and incoherent otherwise. In this paper, the authors provide evidence towards the conjecture (due independently to the authors and Dani Wise) that every free-by-free group is incoherent. To do this, they give a homological condition which lets them conclude that the free-by-free group has a finite index subgroup which surjects onto ℤ with finitely generated kernel; standard arguments imply that this kernel cannot be finitely presented. As an important special case, they show that if the free-by-free group is hyperbolic and virtually special, then it is incoherent.  more » « less
Award ID(s):
2005353
PAR ID:
10554957
Author(s) / Creator(s):
;
Publisher / Repository:
Annales de l'Institut Fourier
Date Published:
Journal Name:
Annales de l'Institut Fourier
Volume:
72
Issue:
6
ISSN:
1777-5310
Page Range / eLocation ID:
2385 to 2397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let $${\mathrm{Diff}}_{0}(N)$$ represent the subgroup of diffeomorphisms that are homotopic to the identity. We show that if $$N$$ is a closed hyperbolic 4-manifold, then $$\pi _{0}{\mathrm{Diff}}_{0}(N)$$ is not finitely generated with similar results holding topologically. This proves in dimension-4 results previously known for $$n$$-dimensional hyperbolic manifolds of dimension $$n\ge 11$$ by Farrell and Jones in 1989 and $$n\ge 10$$ by Farrell and Ontaneda in 2010. Our proof relies on the technical result that $$\pi _{0}{\mathrm{Homeo}}(S^{1}\times D^{3})$$ is not finitely generated, which extends to the topological category smooth results of the authors. We also show that $$\pi _{n-4} {\mathrm{Homeo}}(S^{1} \times D^{n-1})$$ is not finitely generated for $$n \geq 4$$ and in particular $$\pi _{0}{\mathrm{Homeo}}(S^{1}\times D^{3})$$ is not finitely generated. These results are new for $n=4, 5$ and $$7$$. We also introduce higher dimensional barbell maps and establish some of their basic properties. 
    more » « less
  2. We study the fundamental group of an open $$n$$-manifold $$M$$ of nonnegative Ricci curvature with additional stability conditions on $$\widetilde{M}$$, the Riemannian universal cover of $$M$$. We prove that if every asymptotic cone of $$\widetilde{M}$$ is a metric cone, whose cross-section is sufficiently Gromov-Hausdorff close to a prior fixed metric cone, then $$\pi_1(M)$$ is finitely generated and contains a normal abelian subgroup of finite index; if in addition $$\widetilde{M}$$ has Euclidean volume growth of constant at least $$L$$, then we can bound the index of that abelian subgroup by a constant $C(n,L)$. In particular, our result implies that if $$\widetilde{M}$$ has Euclidean volume growth of constant at least $$1-\epsilon(n)$$, then $$\pi_1(M)$$ is finitely generated and $C(n)$-abelian. 
    more » « less
  3. A group is called matricial field (MF) if it admits finite-dimensional approximate unitary representations which are approximately faithful and approximately contained in the left regular representation. This paper provides a new class of MF groups by showing that given two amenable groups with a common normal subgroup, the amalgamated free product is MF. 
    more » « less
  4. Abstract A representation of a finitely generated group into the projective general linear group is called convex co‐compact if it has finite kernel and its image acts convex co‐compactly on a properly convex domain in real projective space. We prove that the fundamental group of a closed irreducible orientable 3‐manifold can admit such a representation only when the manifold is geometric (with Euclidean, Hyperbolic or Euclidean Hyperbolic geometry) or when every component in the geometric decomposition is hyperbolic. In each case, we describe the structure of such examples. 
    more » « less
  5. We bound the size of fibers of word maps in finite and residually finite groups, and derive various applications. Our main result shows that, for any word $$1 \ne w \in F_d$$ there exists $$\e > 0$$ such that if $$\Gamma$$ is a residually finite group with infinitely many non-isomorphic non-abelian upper composition factors, then all fibers of the word map $$w:\Gamma^d \rightarrow \Gamma$$ have Hausdorff dimension at most $$d -\e$$. We conclude that profinite groups $$G := \hat\Gamma$$, $$\Gamma$$ as above, satisfy no probabilistic identity, and therefore they are \emph{randomly free}, namely, for any $$d \ge 1$$, the probability that randomly chosen elements $$g_1, \ldots , g_d \in G$$ freely generate a free subgroup (isomorphic to $$F_d$$) is $$1$$. This solves an open problem from \cite{DPSS}. Additional applications and related results are also established. For example, combining our results with recent results of Bors, we conclude that a profinite group in which the set of elements of finite odd order has positive measure has an open prosolvable subgroup. This may be regarded as a probabilistic version of the Feit-Thompson theorem. 
    more » « less