We investigate representations of Coxeter groups into\mathrm{GL}(n,\mathbb{R})as geometric reflection groups which are convex cocompact in the projective space\mathbb{P}(\mathbb{R}^{n}). We characterize which Coxeter groups admit such representations, and we fully describe the corresponding spaces of convex cocompact representations as reflection groups, in terms of the associated Cartan matrices. The Coxeter groups that appear include all infinite word hyperbolic Coxeter groups; for such groups, the representations as reflection groups that we describe are exactly the projective Anosov ones. We also obtain a large class of nonhyperbolic Coxeter groups, thus providing many examples for the theory of nonhyperbolic convex cocompact subgroups in\mathbb{P}(\mathbb{R}^{n})developed by Danciger–Guéritaud–Kassel (2024).
more »
« less
Convex co‐compact representations of 3‐manifold groups
Abstract A representation of a finitely generated group into the projective general linear group is called convex co‐compact if it has finite kernel and its image acts convex co‐compactly on a properly convex domain in real projective space. We prove that the fundamental group of a closed irreducible orientable 3‐manifold can admit such a representation only when the manifold is geometric (with Euclidean, Hyperbolic or Euclidean Hyperbolic geometry) or when every component in the geometric decomposition is hyperbolic. In each case, we describe the structure of such examples.
more »
« less
- PAR ID:
- 10508833
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Journal of Topology
- Volume:
- 17
- Issue:
- 2
- ISSN:
- 1753-8416
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let M be a geometrically finite acylindrical hyperbolic $$3$$ -manifold and let $M^*$ denote the interior of the convex core of M . We show that any geodesic plane in $M^*$ is either closed or dense, and that there are only countably many closed geodesic planes in $M^*$ . These results were obtained by McMullen, Mohammadi and Oh [Geodesic planes in hyperbolic 3-manifolds. Invent. Math. 209 (2017), 425–461; Geodesic planes in the convex core of an acylindrical 3-manifold. Duke Math. J. , to appear, Preprint , 2018, arXiv:1802.03853] when M is convex cocompact. As a corollary, we obtain that when M covers an arithmetic hyperbolic $$3$$ -manifold $$M_0$$ , the topological behavior of a geodesic plane in $M^*$ is governed by that of the corresponding plane in $$M_0$$ . We construct a counterexample of this phenomenon when $$M_0$$ is non-arithmetic.more » « less
-
Hyperbolic neural networks have been popular in the re- cent past due to their ability to represent hierarchical data sets effectively and efficiently. The challenge in develop- ing these networks lies in the nonlinearity of the embed- ding space namely, the Hyperbolic space. Hyperbolic space is a homogeneous Riemannian manifold of the Lorentz group which is a semi-Riemannian manifold, i.e. a mani- fold equipped with an indefinite metric. Most existing meth- ods (with some exceptions) use local linearization to de- fine a variety of operations paralleling those used in tra- ditional deep neural networks in Euclidean spaces. In this paper, we present a novel fully hyperbolic neural network which uses the concept of projections (embeddings) fol- lowed by an intrinsic aggregation and a nonlinearity all within the hyperbolic space. The novelty here lies in the projection which is designed to project data on to a lower- dimensional embedded hyperbolic space and hence leads to a nested hyperbolic space representation independently useful for dimensionality reduction. The main theoretical contribution is that the proposed embedding is proved to be isometric and equivariant under the Lorentz transforma- tions, which are the natural isometric transformations in hyperbolic spaces. This projection is computationally effi- cient since it can be expressed by simple linear operations, and, due to the aforementioned equivariance property, it al- lows for weight sharing. The nested hyperbolic space rep- resentation is the core component of our network and there- fore, we first compare this representation – independent of the network – with other dimensionality reduction methods such as tangent PCA, principal geodesic analysis (PGA) and HoroPCA. Based on this equivariant embedding, we develop a novel fully hyperbolic graph convolutional neural network architecture to learn the parameters of the projec- tion. Finally, we present experiments demonstrating com- parative performance of our network on several publicly available data sets.more » « less
-
In this note, we generalize a theorem of Juan Souto on rank and Nielsen equivalence in the fundamental group of a hyperbolic fibered [Formula: see text]-manifold to a large class of hyperbolic group extensions. This includes all hyperbolic extensions of surfaces groups as well as hyperbolic extensions of free groups by convex cocompact subgroups of [Formula: see text].more » « less
-
Abstract We prove two results on convex subsets of Euclidean spaces invariant under an orthogonal group action. First, we show that invariant spectrahedra admit an equivariant spectrahedral description, that is, can be described by an equivariant linear matrix inequality. Second, we show that the bijection induced by Kostant's Convexity Theorem between convex subsets invariant under a polar representation and convex subsets of a section invariant under the Weyl group preserves the classes of convex semialgebraic sets, spectrahedral shadows, and rigidly convex sets.more » « less
An official website of the United States government
