The transcriptional coactivator YAP1 (yes-associated protein 1) regulates cell proliferation, cell–cell interactions, organ size, and tumorigenesis. Post-transcriptional modifications and nuclear translocation of YAP1 are crucial for its nuclear activity. The objective of this study was to elucidate the mechanism by which the steroid hormone androgen regulates YAP1 nuclear entry and functions in several human prostate cancer cell lines. We demonstrate that androgen exposure suppresses the inactivating post-translational modification phospho–Ser-127 in YAP1, coinciding with increased YAP1 nuclear accumulation and activity. Pharmacological and genetic experiments revealed that intact androgen receptor signaling is necessary for androgen's inactivating effect on phospho–Ser-127 levels and increased YAP1 nuclear entry. We also found that androgen exposure antagonizes Ser/Thr kinase 4 (STK4/MST1) signaling, stimulates the activity of protein phosphatase 2A, and thereby attenuates the phospho–Ser-127 modification and promotes YAP1 nuclear localization. Results from quantitative RT-PCR and CRISPR/Cas9–aided gene knockout experiments indicated that androgen differentially regulates YAP1-dependent gene expression. Furthermore, an unbiased computational analysis of the prostate cancer data from The Cancer Genome Atlas revealed that YAP1 and androgen receptor transcript levels correlate with each other in prostate cancer tissues. These findings indicate that androgen regulates YAP1 nuclear localization and its transcriptional activity through the androgen receptor–STK4/MST1–protein phosphatase 2A axis, which may have important implications for human diseases such as prostate cancer.
more »
« less
Discordant interactions between YAP1 and polycomb group protein SCML2 determine cell fate
The Polycomb group protein SCML2 and the transcriptional cofactor YAP1 regulate diverse cellular biology, including stem cell maintenance, developmental processes, and gene regulation in mammals and flies. However, their molecular and functional interactions are unknown. Here, we show that SCML2 interacts with YAP1, as revealed by immunological assays and mass spectroscopy. We have demonstrated that the steroid hormone androgen regulates the interaction of SCML2 with YAP1 in human tumor cell models. Our proximity ligation assay and GST pulldown showed that SCML2 and YAP1 physically interacted with each other. Silencing SCML2 by RNAi changed the growth behaviors of cells in response to androgen signaling. Mechanistically, this phenomenon is attributed to the interplay between distinct chromatin modifications and transcriptional programs, likely coordinated by the opposing SCML2 and YAP1 activity. These findings suggest that YAP1 and SCML2 cooperate to regulate cell growth, cell survival, and tumor biology downstream of steroid hormones.
more »
« less
- Award ID(s):
- 1832022
- PAR ID:
- 10554969
- Publisher / Repository:
- ELSEVIER OPEN ACESS
- Date Published:
- Journal Name:
- iScience
- Volume:
- 26
- Issue:
- 10
- ISSN:
- 2589-0042
- Page Range / eLocation ID:
- 107964
- Subject(s) / Keyword(s):
- Cell biology Molecular biology Omics Proteomics.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
RNA binding proteins (RBPs) regulate all aspects of RNA biogenesis from transcription, splicing, and translation to degradation, and they have a critical role in cellular homeostasis and functional diversity. Recent studies have indicated that altered expressions of RBPs are associated with many human diseases ranging from neurologic disorders to cancer. The transcriptional coregulator yes-associated protein 1 (YAP1), a critical nuclear effector of the mammalian Hippo pathway, regulates cell fate, cell contact, metabolism, and developmental processes. This study demonstrates a link between YAP1 and nucleophosmin1 (NPM1) protein. NPM1 is an RNA-binding protein that regulates many cellular activities, including ribosome biogenesis, RNA processing, chromatin remodeling, DNA repair, and genomic stability. We identified NPM1 from YAP1 protein complexes of androgen-responsive human cancer cells using proteomics approaches. Our proximity ligation assay demonstrated that YAP1 and NPM1 physically interacted with each other. The interaction between YAP1 and NPM1 occurred in cell nuclei and was regulated by androgen hormone signaling. In addition, our GST-pulldown assay demonstrated that NPM1 formed a protein complex with the proline-rich domain of YAP1. Furthermore, our enhanced RNA interactome capture (eRIC) assay showed that androgen also regulated the interaction of RBPs to polyA+ mRNA within the cell. Consistent with this observation, our eRIC assay combined with the mass spectrometry method enabled us to identify distinct RBP patterns in human cancer cells that are genetically related but phenotypically different. These observations indicate that global alterations of RBPs under changing environmental conditions may have essential roles in cellular physiology and disease biology.more » « less
-
null (Ed.)The transcriptional co-activator YAP1 (yes-associated protein 1) is a critical nuclear effector of the Hippo pathway. The Hippo pathway regulates cell growth, cell motility, cell migration, and carcinogenesis, but poorly defined mechanism. We investigated biochemical and functional interactions between YAP1 and the nuclear factor (NF)-kappa B/RELA subunit in prostate cancer cell models. We demonstrated that endogenous YAP1 and RELA form protein complexes in the cell, as revealed by co-immunoprecipitation and western blotting. Compared with control, we found that combined treatment of cells with androgen and SDF-1a (stromal cell-derived factor-1 alpha) or RANKL (receptor activator of NF-kappa B ligand) enhanced the protein-protein interaction between YAP1 and RELA, as showed by proximity ligation assay. Our confocal microscopy experiment further showed that combined SDF-1aand androgen treatment promoted the YAP1 and RELA colocalization instead of single-agent treatment. Moreover, our promoter-reporter and RNAi experiments showed that knockdown of YAP1 or TEAD, a key mediator of the YAP transcription, significantly reduced the NF-Kappa B promoter-reporter gene activity. Also, disruption of YAP1 activity attenuated the TEAD-RELA interaction. Furthermore, the controlled expression of MST1/STK4, a potent inhibitor of YAP1, attenuated the NF-Kappa B-promoter reporter activity. Additionally, our unbiased bioinformatics analysis of the exiting ChIP-seq (chromatin immunoprecipitation-sequencing) data sets identified several genes that are likely co-regulated by the YAP1/TEAD and NF-Kappa B/RELA transcription factors. These findings suggest that cooperative androgen and cytokine signaling regulates Hippo/YAP and NF-Kappa B interaction. Thus, the YAP1/TEAD and NF-Kappa B/RELA interaction may have critical roles in cellular biology and human diseases.more » « less
-
Sex comb on midleg-like-2 (SCML2), a conserved polycomb group protein, functions as a transcriptional repressor. SCML2 binds monomethylated lysine residues on histones and regulates homeotic gene expression during development in mammals and the fly. Using proteomic approaches, we have identified SCML2 as a binding partner of the YAP1 protein complexes isolated from nuclei of prostate cancer cell lines. Both SCML2 and YAP1 are known to regulate basic cellular biology, including stem cell maintenance and carcinogenesis. Our western blot analysis showed that, unlike androgen receptor (AR)-negative cancerous and non-cancerous prostate epithelium, AR-positive cell lines express the high levels of SCML2, suggesting a possible link between androgen hormonal signaling and SCML2. In addition, our immunofluorescence imaging revealed that androgen hormone signaling promoted the subcellular localization of SCML2 and YAP1 proteins compared with mock control. Enzalutamide, a potent pharmacological inhibitor of AR, significantly prevented the subcellular distribution ofYAP1 and SCML2. Consistent with this observation, our proximity ligation assay demonstrated that androgen also regulated the physical interaction between SCML2 and YAP1proteins that occurred primarily in cell nuclei. Enzalutamide also prevented protein-protein interaction between YAP and SCML2. Besides, our GST-pulldown assay revealed that SCML2 and proteins physically interact with each other in the test tube. Furthermore, our promoter-reporter assay showed that transfection of two different SCML2 siRNA enhanced the activation of the YAP-responsive promoter-reporter gene four-fold compared to mock siRNA control. These observations suggest that the interaction between SCML2 and YAP1 is biologically functional and crucial in human physiology and disease.more » « less
-
The transcriptional co-activator YAP1 (yes-associated protein 1), a crucial effector of the Hippo pathway in mammals, regulates cell growth, cell motility, cell migration, and carcinogenesis. The STK4/Hippo kinase phosphorylates Ser127 and inactivate YAP1 activity in mammalian cells. Cytokines such as receptor activator of nuclear factor Kappa B (RANKL) regulate the immune system and bone remodeling. Similarly, stroma-cell derived factor 1 alpha (SDF1α) produced by the bone marrow stromal cell, is directly linked to cell migration and metastasis. We hypothesize that RANKL/SDF1α attenuates phospho-Ser127 and enhances YAP nuclear localization. We conducted immunological assays to evaluate the effects of SDF1α or RANKL on YAP1 in the LNCaP prostate cancer cell line. We showed that SDF1α and RANKL modulate phospho-Ser127 and total YAP1 protein in a time-dependent manner, as demonstrated by western blotting. We also showed that SDF1α exposure promoted YAP1 nuclear localization, as revealed by immunofluorescence imaging with confocal microscopy. These findings suggest that cytokines positively regulate YAP1 activity, possibly by counteracting with the STK4/Hippo signaling. The results of this study imply that cytokines secreted by the tumor cell environment promote an invasive cancer cell phenotype by modulating the Hippo-YAP1 pathway.more » « less
An official website of the United States government

