UV absorption is widely used for characterizing proteins structures. The mapping of UV spectra to atomic structure of proteins relies on expensive theoretical simulations, circumventing the heavy computational cost which involves repeated quantum-mechanical simulations of excited-state properties of many fluctuating protein geometries, which has been a long-time challenge. Here we show that a neural network machine-learning technique can predict electronic absorption spectra of N -methylacetamide (NMA), which is a widely used model system for the peptide bond. Using ground-state geometric parameters and charge information as descriptors, we employed a neural network to predict transition energies, ground-state, and transition dipole moments of many molecular-dynamics conformations at different temperatures, in agreement with time-dependent density-functional theory calculations. The neural network simulations are nearly 3,000× faster than comparable quantum calculations. Machine learning should provide a cost-effective tool for simulating optical properties of proteins.
more »
« less
Experimental Assessment of the Electronic and Geometrical Structure of a Near-Infrared Absorbing and Highly Fluorescent Microbial Rhodopsin
The recently discovered Neorhodopsin (NeoR) exhibits absorption and emission maxima in the near-infrared spectral region, which together with the high fluorescence quantum yield makes it an attractive retinal protein for optogenetic applications. The unique optical properties can be rationalized by a theoretical model that predicts a high charge transfer character in the electronic ground state (S0) which is otherwise typical of the excited state S1 in canonical retinal proteins. The present study sets out to assess the electronic structure of the NeoR chromophore by resonance Raman (RR) spectroscopy since frequencies and relative intensities of RR bands are controlled by the ground and excited state’s properties. The RR spectra of NeoR differ dramatically from those of canonical rhodopsins but can be reliably reproduced by the calculations carried out within two different structural models. The remarkable agreement between the experimental and calculated spectra confirms the consistency and robustness of the theoretical approach.
more »
« less
- Award ID(s):
- 2102619
- PAR ID:
- 10555126
- Publisher / Repository:
- The American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- Volume:
- 14
- Issue:
- 41
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 9291 to 9295
- Subject(s) / Keyword(s):
- Chromophores drug resistance electronic structure peptides proteins photoisomerization solvation dynamics and solvent effects
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Theoretical simulations are critical to analyze and interpret the x-ray absorption spectrum of transient open-shell species. In this work, we propose a model of the many-body core-excited states of symmetric diradicals. We apply this model to analyze the carbon K-edge transitions of o-, m-, and p-benzyne, three organic diradicals with diverse and unusual electronic structures. The predictions of our model are compared with high-level multireference computations of the K-edge spectrum of the benzynes obtained with the driven similarity renormalization group truncated to third order. Our model shows the importance of a many-body treatment of the core-excited states of the benzynes and provides a theoretical framework to understand which properties of the ground state of these diradicals can be extracted from their x-ray spectrum.more » « less
-
The correlation of electron transfer with molecular conductance ( g : electron transport through single molecules) by Nitzan and others has contributed to a fundamental understanding of single-molecule electronic materials. When an unsymmetric, dipolar molecule spans two electrodes, the possibility exists for different conductance values at equal, but opposite electrode biases. In the device configuration, these molecules serve as rectifiers of the current and the efficiency of the device is given by the rectification ratio (RR = g forward / g reverse ). Experimental determination of the RR is challenging since the orientation of the rectifying molecule with respect to the electrodes and with respect to the electrode bias direction is difficult to establish. Thus, while two different values of g can be measured and a RR calculated, one cannot easily assign each conductance value as being aligned with or opposed to the molecular dipole, and calculations are often required to resolve the uncertainty. Herein, we describe the properties of two isomeric, triplet ground state biradical molecules that serve as constant-bias analogs of single-molecule electronic devices. Through established theoretical relationships between g and electronic coupling, H 2 , and between H 2 and magnetic exchange coupling, J ( g ∝ H 2 ∝ J ), we use the ratio of experimental J -values for our two isomers to calculate a RR for an unsymmetric bridge molecule with known geometry relative to the two radical fragments of the molecule and at a spectroscopically-defined potential bias. Our experimental results are compared with device transport calculations.more » « less
-
Ultrafast X-ray/XUV transient absorption spectroscopy is a powerful tool for real-time probing of chemical dynamics. Interpretation of the transient absorption spectra requires knowledge of core-excited potentials, which necessitates assistance from high-level electronic-structure computations. In this study, we investigate Br-3d core-excited electronic structures of hydrogen bromide (HBr) using spin-orbit general multiconfigurational quasidegenerate perturbation theory (SO-GMC-QDPT). Potential energy curves and transition dipole moments are calculated from the Franck-Condon region to the asymptotic limit and used to construct core-to-valence absorption strengths for five electronic states of HBr (Σ10+, 3Π1, 1Π1, 3Π0+, 3Σ1) and two electronic states of HBr+ (2Π3∕2, 2Σ1∕2). The results illustrate the capabilities of Br-3d edge probing to capture transitions of the electronic-state symmetry as well as nonadiabatic dissociation processes that evolve across avoided crossings. Furthermore, core-to-valence absorption spectra are simulated from the neutral Σ10+ state and the ionic Π21/2,3/2 states by numerically solving the time-dependent Schrödinger equation and exhibit excellent agreement with the experimental spectrum. The comprehensive and quantitative picture of the core-excited states obtained in this work allows for transparent analysis of the core-to-valence absorption signals, filling gaps in the theoretical understanding of the Br-3d transient absorption spectra.more » « less
-
In this work, a series of eight similarly structured perinone chromophores were synthesized and photophysically characterized to elucidate the electronic and structural tunability of their excited state properties, including excited state redox potentials and fluorescence lifetimes/quantum yields. Despite their similar structure, these chromophores exhibited a broad range of visible absorption properties, quantum yields, and excited state lifetimes. In conjunction with static and time-resolved spectroscopies from the ultrafast to nanosecond time regimes, time-dependent computational modeling was used to correlate this behavior to the relationship between non-radiative decay and the energy-gap law. Additionally, the ground and excited state redox potentials were calculated and found to be tunable over a range of 1 V depending on the diamine or anhydride used in their synthesis ( E red * = 0.45–1.55 V; E ox * = −0.88 to −1.67 V), which is difficult to achieve with typical photoredox-active transition metal complexes. These diverse chromophores can be easily prepared, and with their range of photophysical tunability, will be valuable for future use in photofunctional applications.more » « less
An official website of the United States government

