skip to main content


Title: Understanding the influence of geometric and electronic structure on the excited state dynamical and photoredox properties of perinone chromophores
In this work, a series of eight similarly structured perinone chromophores were synthesized and photophysically characterized to elucidate the electronic and structural tunability of their excited state properties, including excited state redox potentials and fluorescence lifetimes/quantum yields. Despite their similar structure, these chromophores exhibited a broad range of visible absorption properties, quantum yields, and excited state lifetimes. In conjunction with static and time-resolved spectroscopies from the ultrafast to nanosecond time regimes, time-dependent computational modeling was used to correlate this behavior to the relationship between non-radiative decay and the energy-gap law. Additionally, the ground and excited state redox potentials were calculated and found to be tunable over a range of 1 V depending on the diamine or anhydride used in their synthesis ( E red * = 0.45–1.55 V; E ox * = −0.88 to −1.67 V), which is difficult to achieve with typical photoredox-active transition metal complexes. These diverse chromophores can be easily prepared, and with their range of photophysical tunability, will be valuable for future use in photofunctional applications.  more » « less
Award ID(s):
1955795
NSF-PAR ID:
10347515
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
42
ISSN:
1463-9076
Page Range / eLocation ID:
24200 to 24210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A series of four oligothiophenes end‐capped with −Pt(PBu3)2Cl moieties on both ends of the oligomers was synthesized, and their excited state properties were investigated. The observation of low fluorescence quantum yield (<2 %) for the oligomers indicates the strong effect of platinum on the intersystem crossing (ISC) efficiency. No phosphorescence was detected for any of the oligomers; however, strong triplet‐triplet absorption was observed by nanosecond transient spectroscopy for oligomers with more than one thiophene unit. The oligomers displayed short triplet lifetimes (∼1–2 μs) compared to the unmetallated oligomers, due to large spin‐orbit coupling induced by the platinum atom. The lower limits of the ISC yields were indirectly determined by measuring the singlet oxygen quantum yields. Femtosecond–picosecond transient absorption studies revealed that the ISC rate ranges from 1012–1010 s−1, decreasing with increasing oligomer length. Electrochemical studies showed that the oligomers exhibit relatively low oxidation potentials (ca. 0.1 V vs. Fc/Fc+). Quenching of the oligomers’ triplet state absorption, simultaneously with the rise of their corresponding cationic radical absorption band in nanosecond transient spectra in the presence of methyl viologen, as an electron acceptor, established that the electron transfer occurs from their triplet state.

     
    more » « less
  2. Abstract Anthocyanins, which are responsible for most of the red, blue and purple colors of fruits and flowers, are very efficient at absorbing and dissipating light energy via excited state proton transfer or charge-transfer mediated internal conversion without appreciable excited triplet state formation. During the maturation of red wines, grape anthocyanins are slowly transformed into pyranoanthocyanins, which have a much more chemically stable pyranoflavylium cation chromophore. Development of straightforward synthetic routes to mono- and disubstituted derivatives of the pyranoflavylium cation chromophore has stimulated theoretical and experimental studies that highlight the interesting absorption and emission properties and redox properties of pyranoflavylium cations. Thus, p-methoxyphenyl substitution enhances the fluorescence quantum yield, while a p-dimethylaminophenyl substituent results in fast decay via a twisted intramolecular charge-transfer (TICT) state. Unlike anthocyanins and their synthetic analogs (flavylium cations), a variety of pyranoflavylium cations form readily detectable excited triplet states that sensitize singlet oxygen formation in solution and exhibit appreciable two-photon absorption cross sections for near-infrared light, suggesting a potential for applications in photodynamic therapy. These excited triplet states have microsecond lifetimes in solution and excited state reduction potentials of at least 1.3 V vs. SCE, features that are clearly desirable in a triplet photoredox catalyst. 
    more » « less
  3. Generating a sustainable fuel from sunlight plays an important role in meeting the energy demands of the modern age. Herein we report two-coordinate carbene-metal-amide (cMa, M = Cu(I) and Au(I)) complexes can be used as sensitizers to promote the light driven reduction of water to hydrogen. The cMa complexes studied here absorb visible photons (vis > 103 M-1cm-1), maintain long excited state lifetimes (~ 0.2-1 s) and perform stable photo-induced charge transfer to a target substrate with high photoreducing potential (E+/* up to 2.33 V vs. Fc+/0 based on a Rehm-Weller analysis). We pair these coinage metal complexes with a cobalt-glyoxime electrocatalyst to photocatalytically generate hydrogen and compare the performance of the copper- and gold-based cMa complexes. We also find that these two-coordinate complexes presented can perform photo-driven hydrogen production from water without the addition of the cobalt-glyoxime electrocatalyst. In this “catalyst free” system the cMa sensitizer partially decomposes to give metal nanoparticles that catalyze water reduction. This work identifies two-coordinate coinage metal complexes as promising abundant metal, solar fuels photosensitizers that offer exceptional tunability and photoredox properties. 
    more » « less
  4. Protic ruthenium complexes using the dihydroxybipyridine (dhbp) ligand combined with a spectator ligand (N,N = bpy, phen, dop, Bphen) have been studied for their potential activity vs. cancer cells and their photophysical luminescent properties. These complexes vary in the extent of π expansion and the use of proximal (6,6′-dhbp) or distal (4,4′-dhbp) hydroxy groups. Eight complexes are studied herein as the acidic (OH bearing) form, [(N,N)2Ru(n,n′-dhbp)]Cl2, or as the doubly deprotonated (O− bearing) form. Thus, the presence of these two protonation states gives 16 complexes that have been isolated and studied. Complex 7A, [(dop)2Ru(4,4′-dhbp)]Cl2, has been recently synthesized and characterized spectroscopically and by X-ray crystallography. The deprotonated forms of three complexes are also reported herein for the first time. The other complexes studied have been synthesized previously. Three complexes are light-activated and exhibit photocytotoxicity. The log(Do/w) values of the complexes are used herein to correlate photocytotoxicity with improved cellular uptake. For Ru complexes 1–4 bearing the 6,6′-dhbp ligand, photoluminescence studies (all in deaerated acetonitrile) have revealed that steric strain leads to photodissociation which tends to reduce photoluminescent lifetimes and quantum yields in both protonation states. For Ru complexes 5–8 bearing the 4,4′-dhbp ligand, the deprotonated Ru complexes (5B–8B) have low photoluminescent lifetimes and quantum yields due to quenching that is proposed to involve the 3LLCT excited state and charge transfer from the [O2-bpy]2− ligand to the N,N spectator ligand. The protonated OH bearing 4,4′-dhbp Ru complexes (5A–8A) have long luminescence lifetimes which increase with increasing π expansion on the N,N spectator ligand. The Bphen complex, 8A, has the longest lifetime of the series at 3.45 μs and a photoluminescence quantum yield of 18.7%. This Ru complex also exhibits the best photocytotoxicity of the series. A long luminescence lifetime is correlated with greater singlet oxygen quantum yields because the triplet excited state is presumably long-lived enough to interact with 3O2 to yield 1O2.

     
    more » « less
  5. Multiple ultrafast spectroscopic techniques and quantum chemical simulations (QCS) were used to investigate the excited state dynamics of BCC-TPTA. This organic chromophore is believed to possess excited state dynamics governed by a thermally activated delayed fluorescence (TADF) mechanism with a reported internal quantum efficiency ( η IQE ) of 84%. In addition, a significant enhancement in its quantum yield ( Φ ) in solution after purging oxygen has been reported. This Φ enhancement has been widely accepted as due to a delayed fluorescence process occurring on the μs time-scale. The spectroscopic measurements were carried out both in solution and blended films, and from fs to μs time-scales. The excited state dynamics of Rhodamine B and Ir(BT) 2 (acac) were also probed for comparison. Investigations in the absence of oxygen were also carried out. Our time-correlated single photon counting (TCSPC) measurements revealed a lack of a long-lived emissive lifetime for BCC-TPTA in any of the media tested. Our ns transient absorption spectroscopy (ns TAS) experiments revealed that BCC-TPTA does not possess triplet transient states that could be linked to a delayed fluorescence process. Instead, the evidence obtained from our spectroscopic tools suggests that BCC-TPTA has the excited state dynamics of a typical fluorescence chromophore and that just comparing the Φ difference before and after purging oxygen from the solution is not an accurate method to claim excited state dynamics governed by a delayed fluorescence mechanism. Consequently, we believe that previous studies, in which the photo-physics of organic chromophores with TADF characteristics are reported, may have overlooked the influence of the host materials on the obtained optical properties in blended films. 
    more » « less