skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 14, 2025

Title: E-Graphs as Circuits, and Optimal Extraction via Treewidth
We demonstrate a new connection between e-graphs and Boolean circuits. This allows us to adapt existing literature on circuits to easily arrive at an algorithm for optimal e-graph extraction, parameterized by treewidth, which runs in 2^{O(w^2)} poly(w, n) time, where w is the treewidth of the e-graph. Additionally, we show how the circuit view of e-graphs allows us to apply powerful simplification techniques, and we analyze a dataset of e-graphs to show that these techniques can reduce e-graph size and treewidth by 40-80% in many cases. While the core parameterized algorithm may be adapted to work directly on e-graphs, the primary value of the circuit view is in allowing the transfer of ideas from the well-established field of circuits to e-graphs.  more » « less
Award ID(s):
2006359
PAR ID:
10555160
Author(s) / Creator(s):
; ;
Publisher / Repository:
arxiv.org
Date Published:
Journal Name:
arXivorg
Volume:
abs/2408.17042
Issue:
arXiv:2408.17042v2
ISSN:
2331-8422
Page Range / eLocation ID:
1-16
Subject(s) / Keyword(s):
e-graph data structure equivalence relations minimal models bounded tree-width monotone circuits
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding the structure of minor-free metrics, namely shortest path metrics obtained over a weighted graph excluding a fixed minor, has been an important research direction since the fundamental work of Robertson and Seymour. A fundamental idea that helps both to understand the structural properties of these metrics and lead to strong algorithmic results is to construct a “small-complexity” graph that approximately preserves distances between pairs of points of the metric. We show the two following structural results for minor-free metrics: 1) Construction of a light subset spanner. Given a subset of vertices called terminals, and ϵ, in polynomial time we construct a sub graph that preserves all pairwise distances between terminals up to a multiplicative 1+ϵ factor, of total weight at most Oϵ(1) times the weight of the minimal Steiner tree spanning the terminals. 2) Construction of a stochastic metric embedding into low treewidth graphs with expected additive distortion ϵD. Namely, given a minor-free graph G=(V,E,w) of diameter D, and parameter ϵ, we construct a distribution D over dominating metric embeddings into treewidth-Oϵ(log n) graphs such that ∀u,v∈V, Ef∼D[dH(f(u),f(v))]≤dG(u,v)+ϵD. Our results have the following algorithmic consequences: (1) the first efficient approximation scheme for subset TSP in minor-free metrics; (2) the first approximation scheme for bounded-capacity vehicle routing in minor-free metrics; (3) the first efficient approximation scheme for bounded-capacity vehicle routing on bounded genus metrics. En route to the latter result, we design the first FPT approximation scheme for bounded-capacity vehicle routing on bounded-treewidth graphs (parameterized by the treewidth). 
    more » « less
  2. A 2D rigidity circuit is a minimal graph G = (V , E) supporting a non-trivial stress in any generic placement of its vertices in the Euclidean plane. All 2D rigidity circuits can be constructed from K4 graphs using combinatorial resultant (CR) operations. A combinatorial resultant tree (CR-tree) is a rooted binary tree capturing the structure of such a construction. The CR operation has a specific algebraic interpretation, where an essentially unique circuit polynomial is associated to each circuit graph. Performing Sylvester resultant operations on these polynomials is in one-to-one correspondence with CR operations on circuit graphs. This mixed combinatorial/algebraic approach led recently to an effective algorithm for computing circuit polynomials. Its complexity analysis remains an open problem, but it is known to be influenced by the depth and shape of CR-trees in ways that have only partially been investigated. In this paper, we present an effective algorithm for enumerating all the CR-trees of a given circuit with n vertices. Our algorithm has been fully implemented in Mathematica and allows for computational experimentation with various optimality criteria in the resulting, potentially exponentially large collections of CR-trees. 
    more » « less
  3. Bodlaender, Hans L (Ed.)
    In this paper, we show that computing canonical labelings of graphs of bounded rank-width is in TC². Our approach builds on the framework of Köbler & Verbitsky (CSR 2008), who established the analogous result for graphs of bounded treewidth. Here, we use the framework of Grohe & Neuen (ACM Trans. Comput. Log., 2023) to enumerate separators via split-pairs and flip functions. In order to control the depth of our circuit, we leverage the fact that any graph of rank-width k admits a rank decomposition of width ≤ 2k and height O(log n) (Courcelle & Kanté, WG 2007). This allows us to utilize an idea from Wagner (CSR 2011) of tracking the depth of the recursion in our computation. Furthermore, after splitting the graph into connected components, it is necessary to decide isomorphism of said components in TC¹. To this end, we extend the work of Grohe & Neuen (ibid.) to show that the (6k+3)-dimensional Weisfeiler-Leman (WL) algorithm can identify graphs of rank-width k using only O(log n) rounds. As a consequence, we obtain that graphs of bounded rank-width are identified by FO + C formulas with 6k+4 variables and quantifier depth O(log n). Prior to this paper, isomorphism testing for graphs of bounded rank-width was not known to be in NC. 
    more » « less
  4. The celebrated Erdős-Pósa Theorem, in one formulation, asserts that for every c ∈ N, graphs with no subgraph (or equivalently, minor) isomorphic to the disjoint union of c cycles have bounded treewidth. What can we say about the treewidth of graphs containing no induced subgraph isomorphic to the disjoint union of c cycles? Let us call these graphs c-perforated. While 1-perforated graphs have treewidth one, complete graphs and complete bipartite graphs are examples of 2-perforated graphs with arbitrarily large treewidth. But there are sparse examples, too: Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé and Wesolek constructed 2-perforated graphs with arbitrarily large treewidth and no induced subgraph isomorphic to K3 or K3,3; we call these graphs occultations. Indeed, it turns out that a mild (and inevitable) adjustment of occultations provides examples of 2-perforated graphs with arbitrarily large treewidth and arbitrarily large girth, which we refer to as full occultations. Our main result shows that the converse also holds: for every c ∈ N, a c-perforated graph has large treewidth if and only if it contains, as an induced subgraph, either a large complete graph, or a large complete bipartite graph, or a large full occultation. This distinguishes c-perforated graphs, among graph classes purely defined by forbidden induced subgraphs, as the first to admit a grid-type theorem incorporating obstructions other than subdivided walls and their line graphs. More generally, for all c, o ∈ N, we establish a full characterization of induced subgraph obstructions to bounded treewidth in graphs containing no induced subgraph isomorphic to the disjoint union of c cycles, each of length at least o + 2. 
    more » « less
  5. Abstract For a clustered graph , i.e, a graph whose vertex set is recursively partitioned into clusters, the C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph and a representation of each cluster as a region homeomorphic to a closed disk such that (1) the subgraph induced by each cluster is drawn in the interior of the corresponding disk, (2) each edge intersects any disk at most once, and (3) the nesting between clusters is reflected by the representation, i.e., child clusters are properly contained in their parent cluster. The computational complexity of this problem, whose study has been central to the theory of graph visualization since its introduction in 1995 [Feng, Cohen, and Eades, Planarity for clustered graphs , ESA’95], has only been recently settled [Fulek and Tóth, Atomic Embeddability, Clustered Planarity, and Thickenability , to appear at SODA’20]. Before such a breakthrough, the complexity question was still unsolved even when the graph has a prescribed planar embedding, i.e, for embedded clustered graphs . We show that the C-Planarity Testing problem admits a single-exponential single-parameter FPT (resp., XP) algorithm for embedded flat (resp., non-flat) clustered graphs, when parameterized by the carving-width of the dual graph of the input. These are the first FPT and XP algorithms for this long-standing open problem with respect to a single notable graph-width parameter. Moreover, the polynomial dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek and Tóth. In particular, our algorithm runs in quadratic time for flat instances of bounded treewidth and bounded face size. To further strengthen the relevance of this result, we show that an algorithm with running time O ( r ( n )) for flat instances whose underlying graph has pathwidth 1 would result in an algorithm with running time O ( r ( n )) for flat instances and with running time $$O(r(n^2) + n^2)$$ O ( r ( n 2 ) + n 2 ) for general, possibly non-flat, instances. 
    more » « less